Преломление света (Гребенюк Ю.В.). Академия занимательных наук. Физика. Видео Оптическая плотность веществ

Преломление света (Гребенюк Ю.В.). Академия занимательных наук. Физика. Видео Оптическая плотность веществ

Каждый день мы сталкиваемся с различными физическими явлениями. Одно из них — это свет. Сегодня я напишу про некоторые опыты со светом, которые мы проводили вместе с моим сыном Владиком.

Перед проведение опытов со светом важно выделить некоторые его свойства.

Одно из свойств — это прямолинейность его распространения . Только в этом случае возможно образование тени. Тема теней очень интересна. можно играть в теневой театр, можно наблюдать за длинной тени утром, днем и вечером. Для детишек постарше интересно рассматривать проекции объемных предметов. Например, тень конуса может быть треугольником и кругом.

Еще одно свойство — это способность света отражаться от преград. Если лучи падают на зеркало, они отражаются так, что мы видим предмет в натуральную величину. Если лучи падают на неровную поверхность, они отражаются во все стороны и делают эту поверхность освещенной. Именно поэтому мы видим предметы, которые сами не светятся. Зная о способности лучей отражаться проведем опыт. Превратим обычное яйцо в серебряное

Нам понадобятся:

  • вареное яйцо,
  • свеча,
  • стакан с водой.

Закоптили над пламенем свечи яйцо. Оно получилось бархатно черное! Потом погрузили его в воду. Оно заблестело, как серебряное! Дело в том, что частички копоти плохо смачиваются водой. Вокруг яйца образовалась пленка, которая, как зеркало, отражает лучи света.

Интересный факт, связанный с отражающей способностью света. Мираж в пустыне образуется в результате того, что нагретый слой воздуха, прилегающий к раскаленному песку, приобретает зеркальные свойства. Также и асфальтированные дороги сильно нагреваются на солнце, и их поверхность издали словно полита водой и отражает предметы.

Еще интересный момент. Обычно думают, что на Северном И Южном полюсах холодно потому, что им достается от Солнца мало тепла. Это не верно. Антарктида получает ежегодно столько же солнечной энергии, сколько равные ей по площади страны, расположенные в зоне экватора. Но 90% этого тепла она возвращает в мировое пространство. Снежный панцирь, покрывающий Антарктиду, действует как гигантское зеркало, отражающее живительные солнечные лучи.

Когда лучи света попадают из воздуха в какую-то другую среду прозрачную среду, они преломляются . Это легко заметить, если посмотреть на стакан с палочками или ложкой. Палочки сломались. Это очень удивило нашего ребенка!

Преломление лучей на границе двух сред

Нам понадобятся:

  • стакан с водой,
  • луч света (если нет луча естественного света, можно использовать фонарик)

Лучи, проходя через стакан собираются в пучок, а потом расходятся веером. Значит преломление лучей происходить на границе двух сред. То что лучи собираются в пучок мы наблюдаем, когда используем линзу для выжигания.

Муж с упоением рассказывал о том, как они с братьями выжигали на скамейке с помощью линзы.

Часто при преломлении луча света можно наблюдать его разложение на семь цветов. В этом заключается явление дисперсии. Цвета всегда расположены в определенном порядке. Такая последовательность называется спектром. Дисперсия наблюдается и в природе — это радуга.

А мы получили радугу дома

В повседневной жизни мы встречаемся с различными оптическими приборами — от очков наших бабушек до микроскопа, увеличительных стекол. А еще каждый день мы смотримся в зеркало, а с их помощью можно провести

Получить радугу дома можно и с помощью воды. Об этом подробно я рассказываю в книге “Домашняя лаборатория. Опыты с водой ”. И эту книгу я вам дарю. Скачивайте сейчас, радуйте и удивляйте детей. Открывайте увлекательный мир науки вместе. Присылайте фотографии самых ярких и запоминающихся ваших опытов и экспериментов. С помощью простых предметов, можно проводить интересные опыты. Именно о таких мы и рассказываем на страницах Веселой науки. Спасибо, что вы с нами и до скорой встречи.

Удачных экспериментов! Наука – это весело!

Греческий астроном Клавдий Птолемей (около 130 г. н. э.) – автор замечательной книги, которая в течение почти 15 столетий служила основным учебником по астрономии. Однако кроме астрономического учебника Птолемей написал ещё книгу «Оптика», в которой изложил теорию зрения, теорию плоских и сферических зеркал и исследование явления преломления света. С явлением преломления света Птолемей столкнулся, наблюдая звёзды. Он заметил, что луч света, переходя из одной среды в другую, «ломается». Поэтому звёздный луч, проходя через земную атмосферу, доходит до поверхности Земли не по прямой, а по кривой линии, то есть происходит рефракция. Искривление хода луча происходит из-за того, что плотность воздуха меняется с высотой.

Чтобы изучить закон преломления, Птолемей провёл следующий эксперимент. Он взял круг и укрепил на оси линейки l1 и l2 так, чтобы они могли свободно вращаться вокруг неё (см. рисунок). Птолемей погружал этот круг в воду до диаметра АВ и, поворачивая нижнюю линейку, добивался того, чтобы линейки лежали для глаза на одной прямой (если смотреть вдоль верхней линейки). После этого он вынимал круг из воды и сравнивал углы падения α и преломления β. Он измерял углы с точностью до 0,5°. Числа, полученные Птолемеем, представлены в таблице.

Птолемей не нашёл «формулы» взаимосвязи для этих двух рядов чисел. Однако если определить синусы этих углов, то окажется, что отношение синусов выражается практически одним и тем же числом, даже при таком грубом измерении углов, к которому прибегал Птолемей.

Из-за рефракции света в спокойной атмосфере кажущееся положение звезд на небосклоне относительно горизонта

1) выше действительного положения

2) ниже действительного положения

3) сдвинуто в ту или иную сторону по вертикали относительно действительного положения

4) совпадает с действительным положением

Конец формы

Начало формы

В спокойной атмосфере наблюдают положение звёзд, не находящихся на перпендикуляре к поверхности Земли в той точке, где находится наблюдатель. Каково видимое положение звёзд – выше или ниже их действительного положения относительно горизонта? Ответ поясните.

Конец формы

Начало формы

Под рефракцией в тексте понимается явление

1) изменения направления распространения светового луча из-за отражения на границе атмосферы

2) изменения направления распространения светового луча из-за преломления в атмосфере Земли

3) поглощения света при его распространении в атмосфере Земли

4) огибания световым лучом препятствий и тем самым отклонения о прямолинейного распространения

Конец формы

Начало формы

Какой из приведённых ниже выводов противоречит опытам Птолемея?

1) угол преломления меньше угла падения при переходе луча из воздуха в воду

2) с увеличением угла падения линейно увеличивается угол преломления

3) отношение синуса угла падения к синусу угла преломления не меняется

4) синус угла преломления линейно зависит от синуса угла падения

Конец формы

Конец формы

Конец формы

Фотолюминесценция

Некоторые вещества при освещении электромагнитным излучением сами начинают светиться. Такое свечение, или люминесценция, отличается важной особенностью: свет люминесценции имеет иной спектральный состав, чем свет, вызвавший свечение. Наблюдения показывают, что свет люминесценции характеризуется большей длиной волны, чем возбуждающий свет. Например, если пучок фиолетового света направить на колбочку с раствором флюоресцеина, то освещённая жидкость начинает ярко люминесцировать зелёно-жёлтым светом.

Некоторые тела сохраняют способность светиться некоторое время после того, как освещение их прекратилось. Такое послесвечение может иметь различную длительность: от долей секунды до многих часов. Принято называть свечение, прекращающееся с освещением, флюоресценцией, а свечение, имеющее заметную длительность, фосфоресценцией.

Фосфоресцирующие кристаллические порошки используются для покрытия специальных экранов, сохраняющих своё свечение две-три минуты после освещения. Такие экраны светятся и под действием рентгеновских лучей.

Очень важное применение нашли фосфоресцирующие порошки при изготовлении ламп дневного света. В газоразрядных лампах, наполненных парами ртути, при прохождении электрического тока возникает ультрафиолетовое излучение. Советский физик С.И. Вавилов предложил покрывать внутреннюю поверхность таких ламп специально изготовленным фосфоресцирующим составом, дающим при облучении ультрафиолетом видимый свет. Подбирая состав фосфоресцирующего вещества, можно получить спектральный состав излучаемого света, максимально приближённый к спектральному составу дневного света.

Явление люминесценции характеризуется крайне высокой чувствительностью: достаточно иногда 10 – – 10 г светящегося вещества, например в растворе, чтобы обнаружить это вещество по характерному свечению. Это свойство лежит в основе люминесцентного анализа, который позволяет обнаружить ничтожно малые примеси и судить о загрязнениях или процессах, приводящих к изменению исходного вещества.

Ткани человека содержат большое количество разнообразных природных флуорофоров, которые имеют различные спектральные области флуоресценции. На рисунке представлены спектры свечения основных флуорофоров биологических тканей и шкала электромагнитных волн.

Согласно приведённым данным пироксидин светится

1) красным светом

2) жёлтым светом

3) зелёным светом

4) фиолетовым светом

Конец формы

Начало формы

Два одинаковых кристалла, имеющих свойство фосфоресцировать в жёлтой части спектра, были предварительно освещены: первый красными лучами, второй синими лучами. Для какого из кристаллов можно будет наблюдать послесвечение? Ответ поясните.

Конец формы

Начало формы

При исследовании пищевых продуктов люминесцентный метод можно использовать для установления порчи и фальсификации продуктов.
В таблице приведены показатели люминесценции жиров.

Цвет люминесценции сливочного масла изменился с жёлто-зелёного на голубой. Это означает, что в сливочное масло могли добавить

1) только маргарин сливочный

2) только маргарин «Экстра»

3) только сало растительное

4) любой из указанных жиров

Конец формы


Альбедо Земли

Температура у поверхности Земли зависит от отражательной способности планеты – альбедо. Альбедо поверхности – это отношение потока энергии отражённых солнечных лучей к потоку энергии падающих на поверхность солнечных лучей, выраженное в процентах или долях единицы. Альбедо Земли в видимой части спектра – около 40%. В отсутствие облаков оно было бы около 15%.

Альбедо зависит от многих факторов: наличия и состояния облачности, изменения ледников, времени года, и, соответственно, от осадков.

В 90-х годах XX века стала очевидна значительная роль аэрозолей – «облаков» мельчайших твёрдых и жидких частиц в атмосфере. При сжигании топлива в воздух попадают газообразные оксиды серы и азота; соединяясь в атмосфере с капельками воды, они образуют серную, азотную кислоты и аммиак, которые превращаются потом в сульфатный и нитратный аэрозоли. Аэрозоли не только отражают солнечный свет, не пропуская его к поверхности Земли. Аэрозольные частицы служат ядрами конденсации атмосферной влаги при образовании облаков и тем самым способствуют увеличению облачности. А это, в свою очередь, уменьшает приток солнечного тепла к земной поверхности.

Прозрачность для солнечных лучей в нижних слоях земной атмосферы зависит также от пожаров. Из-за пожаров в атмосферу поднимается пыль и сажа, которые плотным экраном закрывают Землю и увеличивают альбедо поверхности.

Какие утверждения справедливы?

А. Аэрозоли отражают солнечный свет и, тем самым, способствуют уменьшению альбедо Земли.

Б. Извержения вулканов способствуют увеличению альбедо Земли.

1) только А

2) только Б

3) и А, и Б

4) ни А, ни Б

Конец формы

Начало формы

В таблице приведены некоторые характеристики для планет Солнечной системы – Венеры и Марса. Известно, что альбедо Венеры А 1 = 0,76, а альбедо Марса А 2 = 0,15. Какая из характеристик, главным образом, повлияла на различие в альбедо планет?

1) А 2) Б 3) В 4) Г

Конец формы

Начало формы

Увеличивается или уменьшается альбедо Земли в период извержения вулканов? Ответ поясните.

Конец формы

Начало формы

Под альбедо поверхности понимают

1) общий поток падающих на поверхность Земли солнечных лучей

2) отношение потока энергии отражённого излучения к потоку поглощённого излучения

3) отношение потока энергии отражённого излучения к потоку падающего излучения

4) разность между падающей и отражённой энергией излучения

Конец формы

Изучение спектров

Все нагретые тела излучают электромагнитные волны. Чтобы экспериментально исследовать зависимость интенсивности излучения от длины волны, необходимо:

1) разложить излучение в спектр;

2) измерить распределение энергии в спектре.

Для получения и исследования спектров служат спектральные аппараты – спектрографы. Схема призменного спектрографа представлена на рисунке. Исследуемое излучение поступает сначала в трубу, на одном конце которой имеется ширма с узкой щелью, а на другом – собирающая линза L 1 . Щель находится в фокусе линзы. Поэтому расходящийся световой пучок, попадающий на линзу из щели, выходит из неё параллельным пучком и падает на призму Р .

Так как разным частотам соответствуют различные показатели преломления, то из призмы выходят параллельные пучки разного цвета, не совпадающие по направлению. Они падают на линзу L 2 . На фокусном расстоянии от этой линзы располагается экран, матовое стекло или фотопластинка. Линза L 2 фокусирует параллельные пучки лучей на экране, и вместо одного изображения щели получается целый ряд изображений. Каждой частоте (точнее, узкому спектральному интервалу) соответствует своё изображение в виде цветной полоски. Все эти изображения вместе
и образуют спектр.

Энергия излучения вызывает нагревание тела, поэтому достаточно измерить температуру тела и по ней судить о количестве поглощённой в единицу времени энергии. В качестве чувствительного элемента можно взять тонкую металлическую пластину, покрытую тонким слоем сажи, и по нагреванию пластины судить об энергии излучения в данной части спектра.

Разложение света в спектр в аппарате, изображённом на рисунке, основано на

1) явлении дисперсии света

2) явлении отражения света

3) явлении поглощения света

4) свойствах тонкой линзы

Конец формы

Начало формы

В устройстве призменного спектрографа линза L 2 (см. рисунок) служит для

1) разложения света в спектр

2) фокусировки лучей определённой частоты в узкую полоску на экране

3) определения интенсивности излучения в различных частях спектра

4) преобразования расходящегося светового пучка в параллельные лучи

Конец формы

Начало формы

Нужно ли металлическую пластину термометра, используемого в спектрографе, покрывать слоем сажи? Ответ поясните.


Конец формы

Начало формы

Урок по физике в 11 классе по теме "Преломление света" .

Цели урока:

    проверить знание законов отражения;

    научить измерять показатель преломления стекла, используя закон преломления;

    развитие навыков самостоятельной работы с оборудованием;

    развитие логического мышления, памяти, умение подчинять внимание выполнению заданий.

    воспитание аккуратной работы с оборудованием;

    воспитание сотрудничества в процессе совместного выполнения задач.

Межпредметные связи: физика, математика, литература.

Тип урока: изучение нового материала, совершенствование и углубление знаний, умений, навыков.

Оборудование:

    Приборы и материалы для лабораторной работы: стакан высокий вместимостью 50 мл, пластина стеклянная (призма) с косыми гранями, пробирка, карандаш.

    Чашка с водой, на дне которой монета; тонкий стеклянный стакан.

    Пробирка с глицерином, стеклянная палочка.

    Карточки с индивидуальным заданием.

Демонстрация: Преломление света. Полное внутреннее отражение.

ХОД УРОКА.

I. Организационный момент. Сообщение темы урока.

Учитель: Ребята, мы с вами перешли к изучению раздела физики «Оптика», в которой изучаются законы распространения света в прозрачной среде на основе представлений о световом луче. Сегодня вы узнаете, что закон преломления волн справедлив и для света.

Итак, цель сегодняшнего урока – изучение закона преломления света.

II. Актуализация опорных знаний.

1. Что такое световой луч? (Геометрическая линия, указывающая направление распространения световой энергии, называется световым лучом.)

Природа света – электромагнитная. Одним доказательством этого является совпадение величин скоростей электромагнитных волн и света в вакууме. При распространении света в среде он поглощается и рассеивается, а на границе раздела сред – отражается и преломляется.

Повторим законы отражения. (УСТНО: на интерактивной доске подготовлены задания)

Карточка 1.
Построить в тетради отраженный луч.

Карточка 2.
Будут ли параллельны отраженные лучи?

Карточка 3.
Постройте отражающую поверхность.

Карточка 4.
Угол между падающим лучом и отраженным лучом 60°. Чему равен угол падения? Начертить в тетради.

2. Сформулируйте закон распространения света.

А в полдень лужи под окном
Так разливаются и блещут,
Что ярким солнечным пятном
По залу «зайчики» трепещут.
И.А. Бунин.

Объясните с точки зрения физики наблюдаемое явление, описанное Буниным в четверостишии.

Проверка выполнение заданий по карточкам.

III. Объяснение нового материала.

На границе раздела двух сред свет, падающий из первой среды, отражается в неё обратно. Если вторая среда прозрачная, то свет частично может пройти через границу сред. При этом, как правило, он меняет направление распространения, или испытывает преломление.

Преломление волн при переходе из одной среды в другую вызвано тем, что скорости распространения волн в этих средах различны.

Выполните опыты «Наблюдение преломления света».

    Расположите карандаш наклонно в стакане с водой и посмотрите на него сверху, а затем сбоку. Почему при наблюдении сверху карандаш у поверхности воды кажется надломленным?
    Почему при наблюдении сбоку часть карандаша, расположенная в воде, кажется сдвинутой в сторону и увеличенной в диаметре?
    Это все объясняется тем, что при переходе из одной прозрачной среды в другую световой луч преломляется.

    Наблюдение отклонения лучика лазерного фонарика при прохождении через плоскопараллельную пластину.

Падающий луч, преломленный луч и перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости; отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух сред, называемая относительным показателем преломления второй среды относительно первой.

Показатель преломления относительно вакуума называется абсолютным показателем преломления.

В сборнике задач найдите таблицу «Показатель преломления веществ». Обратите внимание, что стекло, алмаз имеют больший показатель преломления, чем вода. Как вы думаете почему? Твердые тела имеют более плотную кристаллическую решетку, свету труднее пройти через неё, поэтому вещества имеют больший показатель преломления.

Вещество, имеющее больший показатель преломления n 1 , называется оптически более плотной средой, если n 1 > n 2 . Вещество, имеющее меньший показатель преломления n 1 , называется оптически менее плотной средой, если n 1 < n 2 .

IV. Закрепление пройденной темы.

2. Решение задач №1395.

3. Лабораторная работа «Определение показателя преломления стекла».

Оборудование: Стеклянная пластина с плоскопараллельными гранями, дощечка, транспортир, три булавки, карандаш, угольник.

Порядок выполнения работы.

V.

Можно повторить опыт изобретателя со стеклянной палочкой – «палочкой-невидимкой». В колбу с глицерином через пробку вставляется стеклянная палочка, часть палочки, погруженная в глицерин, становится невидимой. Если колбу перевернуть, то невидимой становится другая часть палочки. Наблюдаемый эффект легко объясняется. Показатель преломления стекла почти равен показателю преломления глицерина, поэтому на границе данных веществ не происходит ни преломления, ни отражения света.

Полное отражение.

Если свет переходит из оптически более плотной среды в оптически менее плотную среду (на рисунке), то при некотором угле падения α0 угол преломления β становится равным 90°. Интенсивность преломленного луча в этом случае становится равной нулю. Свет, падающий на границу раздела двух сред полностью отражается от неё. Происходит полное отражение.

Угол падения α0 , при котором наступает полное внутреннее отражение света, называется предельным углом полного внутреннего отражения. При всех углах падения, равных и больших α0 , происходит полное отражение света.

Величина предельного угла находится из соотношения . Если n 2 =1 (вакуум, воздух), то .

Опыты «Наблюдение полного отражения света».

1. Расположите карандаш наклонно в стакане с водой, поднимите стакан выше уровня глаз и посмотрите снизу через стакан на поверхность воды. Почему при рассматривание снизу поверхность воды в стакане кажется зеркальной?

2. Опустите пустую пробирку в стакан с водой и посмотрите на неё сверху часть пробирки, погруженная в воду, кажется блестящей?

3. Проделайте дома опыт «Делаем монетку невидимой». Вам понадобится монетка, чаша с водой и прозрачный стакан. Положите монетку на дно чаши и заметьте, под каким углом она видна снаружи. Не сводя глаз с монетки, опускайте потихонечку сверху в чашу перевернутый пустой прозрачный стакан, держа его строго вертикально, чтобы вода не заливалась внутрь. Объясните на следующем уроке наблюдаемое явление.

(В некоторый момент монета исчезнет! Когда вы опускаете стакан, уровень воды в чаше поднимается. Теперь, чтобы выйти из чаши, луч должен дважды пройти границу раздела вода-воздух. После прохождения первой границы угол преломления будет значительным, так что на второй границе произойдет полное внутреннее отражение. Свет уже не выходит из чаши, поэтому вы и не видите монетки.)

Для границы раздела стекло-воздух угол полного внутреннего отражения равен: .

Предельные углы полного отражения.

Алмаз…24º
Бензин….45º
Глицерин…45º
Спирт…47º
Стекло различных сортов …30º-42º
Эфир…47º

Испытывая полное внутреннее отражение, световой сигнал может распространятся внутри гибкого стекловолокна (световода). Свет может покидать волокно лишь при больших начальных углах падения и при значительном изгибе волокна. Использование пучка, состоящего из тысяч гибких стекловолокон (с диаметром каждого волокна от 0,002-0,01 мм), позволяет передавать из начала в конец пучка оптические изображения.

Волоконная оптика – система передачи оптических изображений с помощью стекловолокон (стекловодов).

Волоконно-оптические устройства повсеместно используются в медицине в качестве эндоскопов – зондов, вводимых в различные внутренние органы (бронхиальные трубы, кровеносные сосуды и т. д.) для непосредственного визуального наблюдения.

В настоящее время волоконная оптика вытесняет металлические проводники в системах передачи информации.

Увеличение несущей частоты передаваемого сигнала увеличивает объём передаваемой информации. Частота видимого света на 5-6 порядков превосходит несущую частоту радиоволн. Соответственно с помощью светового сигнала можно передавать в миллион раз больше информации, чем с помощью радиосигнала. Необходимая информация по волоконному кабелю передается в виде модулированного лазерного излучения. Волоконная оптика необходима для быстрой и качественной передачи компьютерного сигнала, содержащего большой объём передаваемой информации.

Полное внутреннее отражение используется в призматических биноклях, перископах, зеркальных фотоаппаратах, а также в световращателях (катафотах), обеспечивающих безопасную стоянку и движение автомобилей.

Подведение итогов.

На сегодняшнем уроке мы познакомились с преломлением света, узнали, что такое показатель преломления, определили показатель преломления плоскопараллельной стеклянной пластины, познакомились с понятием полного отражения, узнали о применение волоконной оптики.

Домашнее задание.

Мы рассмотрели преломление света на плоских границах. При этом размер изображения остается равным размеру предмета. На следующих уроках мы рассмотрим прохождение светового луча через линзы. Необходимо повторить из биологии строение глаза.

Список литературы:

    Г.Я. Мякишев. Б.Б. Буховцев . Учебник по физике 11 класс.

    В.П.Демкович, Л.П.Демкович . Сборник задач по физике.

    Я.И.Перельман . Занимательные задачи и опыты.

    И.Я. Ланина . Не уроком единым.

На предыдущих уроках вы познакомились с основными законами распространения света: законами отражения и преломления. Но, как известно, любой постигнутый закон человек стремится использовать на практике. Если для двух сред показатель преломления остается постоянным, можем ли мы, например, определять вещество одной среды, зная вещество другой по углу отклонения светового луча при прохождении границы раздела этих сред? Как это сделать на практике, вы узнаете из этого урока, посвященного лабораторной работе.

Тема: Оптика

Урок: Практическая работа по теме "Определение показателя преломления стекла"

Цель работы : определение относительного показателя преломления стекла с помощью плоскопараллельной пластины.

Рис. 1. Определение показателя

sinα – угол падения

sinγ – угол преломления

На рисунке – две горизонтальные линии: малая и большая грань плоскопараллельной пластины (см. Рис. 1).

В точке О располагается первая булавка. Вторая булавка располагается в точке А. Направление АО – направление падающего луча.

Направление от точки О до булавки, расположенной на большой грани, – преломленный луч.

Отмерим при помощи линейки расстояние ОD = ОА.

Из точки А на перпендикуляр раздела двух сред опускаем перпендикуляр. Из точки D на перпендикуляр раздела двух сред опускаем перпендикуляр.

Два треугольника – прямоугольные. В них можно определять синус угла падения и синус угла преломления.

При помощи линейки измеряются расстояние АС и расстояние DB.

Необходимо сделать несколько измерений. Для этого нужно изменять расположение второй булавки под любым другим углом. Вследствие этого угол падения и угол преломления будут меняться, но показатель преломления будет постоянным для данных двух сред.

1 способ

Оборудование : плоскопараллельная пластина, 3 булавки, линейка, транспортир, лист бумаги, карандаш, кусок поролона.

Ход работы:

1. Положим на стол кусок поролона, чтоб было удобнее воткнуть булавки.

2. Накрываем поролон белым листом бумаги.

3. Положим сверху плоскопараллельную стеклянную пластинку.

4. Карандашом обводим малую и большую грани.

5. Первую булавку воткнем возле первой грани, вторую булавку воткнем под некоторым углом к первой.

6. Наблюдая за двумя булавками через большую грань, найдем точку расположения третьей булавки, чтобы первая и вторая загораживали друг друга (см. Рис. 2).

Рис. 2. Плоскопараллельная пластина

7. Отмечаем место расположения всех трех булавок.

8. Снимаем оборудование и смотрим на полученный чертеж.

9. При помощи линейки измеряем катеты (см. Рис. 3).

Рис. 3. Определение показателя

СА = 15 мм, DB = 10 мм.

Для более точного результата необходимо выполнить несколько экспериментов.

Относительный показатель преломления равен 1,5, это означает, что скорость света при переходе из воздуха в стекло уменьшается в 1,5 раза.

Чтоб проверить полученные данные, необходимо сравнить их с таблицей показателей преломления для различных веществ (см. Рис. 4).


Рис. 4. Таблица показателей преломления

По показателю преломления можно определить, какое у нас вещество.

2 способ

Оборудование: лампочка, экран со щелью, лист бумаги.

Ход работы:

1. При помощи проводов соединяем гальванический элемент (батарейку) с лампочкой накаливания.

2. Перед лампой ставим экран со щелью, а за ним кладем плоскопараллельную пластинку.

3. Измеряем угол падения и угол преломления при помощи транспортира.

4. Используя таблицу Брадиса, найдем значения синусов по углам.

5. Вычисляем показатель преломления (см. Рис. 5).

Рис. 5. Плоскопараллельная пластина

Пример расчета погрешности

Погрешность:

1. Абсолютная.

2. Относительная.

Абсолютные погрешности: измерительного прибора, измерения

В металлической линейке погрешностью можно считать половину цены деления этого измерительного прибора, т.е. 0,5 мм.

Погрешность измерения также может составить половину цены деления линейки (0,5 мм).

В целом абсолютная погрешность равна 1 мм.

Относительная погрешность (ε) (см. Рис. 6):

Рис. 6. Относительная погрешность

Определение абсолютной погрешности измеряемого показателя преломления (см. Рис. 7):

Рис. 7. Абсолютной погрешность

1. Нижегородский филиал МИИТ ( ).

Михальчук Артём Александрович, Абрамова Валерия Валерьевна, ученики 10 «В» класса МОУ «СОШ №8» г. Саратова

Описание собственных наблюдений некоторых удивительных световых явлений, попытка объяснить их, смоделировать и исследовать их на опыте в условиях школьного кабинета физики.

Скачать:

Предварительный просмотр:

Муниципальное общеобразовательное учреждение

«Средняя общеобразовательная школа №8 Волжского района

города Саратова»

Рефракция света в земной атмосфере и обманы зрения

Учебно-исследовательская работа по физике

Александрович

Ученик 10 «В» класса

МОУ «СОШ №8» г. Саратова

Руководитель: учитель физики

Иванова Татьяна Петровна

Саратов 2008 г.

  1. Введение……………………………………………………………………… 3
  2. Полное внутреннее отражение света……………...………………………... 4
  3. «Чёрное зеркало»…………………………………………………………….. 5
  4. Отражение от нагретой воды….……………………………………………. 6
  5. Распространение света в слоисто-неоднородной среде…………………... 7
  6. Астрономическая рефракция……………………………………………….. 8
  7. Своеобразие солнечных закатов……………………………………………. 9
  8. Земная рефракция…………………………………………………………... 11
  9. Моделирование двойного миража………………………………………… 13
  10. Заключение………………………………………………………………… 14
  11. Список использованной литературы……………………………………... 15

Введение

Чтобы наблюдать многие оптические явления, не обязательно находиться в физической лаборатории, оборудованной дорогостоящими приборами. Жизнь на Земле невозможна без тёплого и светлого прикосновения солнечных лучей. Стоит лишь приглядеться, и рядом с нами обнаружится множество удивительных явлений, связанных со светом.

Глядя в обычное зеркало, можно понять законы отражения. Любуясь закатом Солнца, размышлять о преломлении света. Радуга напоминает о дисперсии, цветные крылья стрекоз – об интерференции.

В некоторых случаях для объяснения оптических явлений не важна природа света, достаточно знать его основные свойства: прямолинейность распространения в однородной среде, законы отражения и преломления, т.е. владеть геометрической оптикой.

Цель данной работы – описать собственные наблюдения некоторых удивительных световых явлений, попытаться объяснить их, смоделировать и исследовать их на опыте в условиях школьного кабинета физики. Были выполнены следующие демонстрации опытов, описанных В.В. Майером в учебных руководствах: полное отражение света, отражение от нагретой воды, искривление светового пучка оптически неоднородной жидкостью и неравномерно нагретым оргстеклом. Проведённые исследования помогли объяснить красивые оптические явления, происходящие со светом на границе раздела оптически однородных сред и в слоисто-неоднородной среде, какой и является земная атмосфера.

Полное внутреннее отражение света

Первое знакомство с полным отражением света в школе происходит, как правило, при известной демонстрации хода луча через полуцилиндр из оргстекла. Преломление света происходит на границе раздела стекло-воздух (n 1 > n 2 ).

Согласно закону преломления, отношение синуса угла падения к синусу угла преломления есть величина постоянная, равная относительному показателю преломления второй среды относительно первой или отношению абсолютных показателей преломления второй и первой сред.

Т.к. n 1 > n 2 , то sin β > sin α и, следовательно, β > α . При увеличении угла падения растут углы отражения и преломления, причём интенсивность отражённого света увеличивается, а преломлённого уменьшается. α 0 , при котором β=π/2, называется предельным углом полного отражения света. При любых углах падения, превышающих предельный, падающий пучок полностью отражается.

«Чёрное зеркало»

Существует целый ряд занимательных и поучительных опытов, исследующих

явление полного отражения света.

Вот один из них. Металлическая пластинка покрывается слоем копоти. Такая поверхность может отражать свет лучше любого зеркала, если её опустить в сосуд с водой. При определённом угле между поверхностью пластинки и направлением наблюдения чёрная поверхность блестит, как зеркало! Можно в этом «чёрном зеркале» получить изображение какого-нибудь предмета. На границе каких сред происходит полное отражение света? Копоть не прозрачна, значит не она участвует в «возврате» луча обратно в воду. Дело в том, что между водой и слоем копоти образуется тонкая воздушная плёнка. Вода не смачивает копоть. Полное отражение света возникает на границе сред вода – воздух. Глядя на пластинку сверху сквозь поверхность воды, мы увидим её блестящей.

Рис. 1

Эффект «Чёрного зеркала»

Но не при любом положении пластинки по отношению к боковой стенке сосуда это можно увидеть, если смотреть не сверху, а сквозь боковую стенку. Ожидаемого полного отражения наблюдать не удаётся, если пластинка параллельна стенке сосуда, т.е. тогда, когда слой воды, отдаляющий нас от воздушной прослойки, является плоскопараллельным.

Поворачивая пластинку вокруг вертикальной оси, можно добиться появления «чёрного зеркала». Объяснение явления в сравнении хода лучей через плоскопараллельный слой воды и через слой воды в виде клина (рис. 1 и 2).

Полное отражение имеет место в том случае, если на границу между водой и воздушной прослойкой, отделяющей воду от чёрной пластинки, свет падает под углами, превышающими предельный. Но таких лучей в первом случае просто нет, а во втором – из-за расширения слоя воды добиться полного отражения света можно даже при α π/2.

Рис. 2 Эффект «Чёрного зеркала» отсутствует

Опыт № 1

«Чёрное зеркало»

Цель. Наблюдение полного отражения света.

Приборы и материалы: стеклянный сосуд, алюминиевая пластина, свеча, вода.

Ход опыта. 1. Закоптить алюминиевую пластину над пламенем свечи.

2. Опустить пластину в сосуд с водой.

3. Наблюдать появление «Чёрного зеркала» поворачивая пластину вокруг вертикальной оси.

Отражение от нагретой воды

Для проведения следующего опыта понадобится большой сосуд с холодной водой, жестяная банка из-под кофе, кипяток. Поверхность банки должна быть тёмной. При быстром заливании в эту банку, закреплённую вертикально в большом сосуде, кипятка, можно увидеть, как поверхность её становится блестящей! Объяснить появления «зеркала» в этом опыте полным отражением света не удастся, т.к. жесть хорошо смачивается водой, в отличие от копоти. Кроме того, появившееся «чёрное зеркало» в предыдущем опыте может сохраняться сколь угодно долго, тогда как в новой ситуации оно само через некоторое время пропадёт. Измерение температуры воды в радиальном направлении к центру большого сосуда показывает, что исчезновение блеска происходит тогда, когда вся толща воды во внешнем сосуде прогреется до примерно одной и той же температуры. Наблюдается же полное отражение лишь при условии, что вода во внешнем сосуде нагрета неравномерно. Вблизи банки с горячей водой её температура наибольшая, а плотность – наименьшая. Следовательно, минимальна и оптическая плотность. Показатель преломления этого слоя воды меньше, чем у холодной воды.

Нет резкой границы между средами с разной оптической плотностью, а значит, нет и отражения в привычном смысле этого слова.

Вода вокруг горячей банки оптически неоднородна с плавным изменением оптической плотности. В такой среде луч света распространяется криволинейно, загибаясь в сторону от меньших значений показателя преломления к большим его значениям (Рис. 3).

Рис. 3 Отражение от нагретой воды

Опыт № 2

Отражение от нагретой воды

Цель. Наблюдение искривления луча света в оптически неоднородной среде.

Приборы и материалы: стеклянный сосуд, жестяная банка из-под кофе, покрашенная матовой чёрной краской, размером: D ~ 6 см, H ~ 12 см, холодная вода, горячая вода (t° ~ 100°С).

Ход опыта. 1. В сосуде с холодной водой закрепить пустую жестяную банку.

2. В жестяную банку залить кипяток.

3. Наблюдать сверху кратковременное появление зеркальной поверхности банки.

Распространение света

в слоисто-неоднородной среде

Слоисто-неоднородными называют такие оптически неоднородные среды, в которых равные значения показателя преломления образуют слои. Рассмотрим самый простой случай, когда показатель преломления среды изменяется только в одном направлении.

А б

Рис. 4

Пусть показатель преломления изменяется снизу вверх. Мысленно разобьём среду на тонкие горизонтальные слои. Луч света меняет своё направление от слоя к слою.

Кроме способа получения слоисто-неоднородной среды, описанной в последнем опыте, можно использовать способ, основанный на явлении диффузии. Готовится насыщенный раствор соли (350 г соли на 1 л воды) в одном сосуде и чистая отстоявшаяся вода в другом. Обе жидкости подкрашиваются хвойным концентратом, фильтруются.

Раствор соли через воронку и шланг осторожно вливается в воду. Граница раздела между ними сначала довольно резкая. Об этом свидетельствует полное отражение луча света от неё. Через некоторое время граница «размазывается», и световой пучок распространяется криволинейно.

В нижней части аквариума находится раствор поваренной соли, имеющий большую оптическую плотность, чем расположенная над ним вода. Показатель преломления убывает непрерывно вдоль оси y. Т.к. n=c/ v , скорость распространения света в верхних слоях жидкости больше, чем в нижних. Плоская волновая поверхность внутри жидкости будет
Рис. 5 поворачиваться, занимая последовательно положения 1, 2, 3, 4, 5 и т.д. Вверху свет будет распространяться быстрее, чем внизу.
Убедительнее для наблюдения искривления луча в оптически неоднородной среде проходит опыт с нагреваемым оргстеклом. Полуцилиндрическая пластина из оргстекла устанавливается на электрическую плитку, которая разогревается примерно до 100°С. Постепенно эффект полного отражения луча на границе стекло-воздух переходит в плавное его искривление. Причина – изменение оптической плотности оргстекла из-за изменения его температуры.

Искривление луча в оргстекле.

Опыт №3

Распространение света в неравномерно нагретом оргстекле

Цель. Наблюдение искривления светового луча в оргстекле при нагревании.

Приборы и материалы: полуцилиндрическая пластина из оргстекла, электрическая плитка, источник света с лампой на 12 В, снабжённый экраном со щелью шириной 2 мм (из комплекта шайбы Гартля).

Ход опыта. 1. Установить пластину из оргстекла на холодную электрическую плитку.

2. Включить плитку в сеть.

4. Наблюдать замену полного отражения луча в его изгибание.

Астрономическая рефракция.

Искривление световых лучей при прохождении света через атмосферу называется рефракцией света в атмосфере. Астрономической рефракции подвергаются лучи, приходящие к земному наблюдателю от Солнца, Луны или звёзд. При объяснении этих явлений надо учитывать, что показатель преломления атмосферы немного больше единицы и то, что он изменяется от точки к точке соответственно изменению плотности воздуха.

А б

Рис. 6

Если представить атмосферу как набор оптически однородных горизонтальных слоёв одинаковой толщины, у которых показатель преломления скачком меняется от одного слоя к другому, постепенно увеличиваясь в направлении от верхних слоёв к нижним, то траектория луча, приходящего от небесного объекта к наблюдателю будет ломаной линией (Рис. 3, а). В действительности плотность атмосферы, а значит, и её показатель преломления изменяются с высотой не скачками, а непрерывно. Потому траектория светового луча представляет собой кривую линию (Рис. 6, б). Вследствие искривления лучей наблюдатель может видеть объект не в том направлении, которое соответствует действительности. В отсутствие рефракции объект был бы виден под углом α (действительное зенитное расстояние объекта). Рефракция же приводит к тому, что объект виден под углом γ. γ

Своеобразие солнечных закатов

Любуясь закатом Солнца, мы видим, как нижний край света коснулся линии горизонта, мы обычно не осознаём, что в действительности в данный момент этот край света уже находится на 35´ ниже линии горизонта. Верхний край солнечного диска приподнимается рефракцией слабее – только на 29´. Поэтому заходящее Солнце кажется немного сплюснутым по вертикали.

Рис. 7

На показатель преломления воздуха влияет, кроме математического изменения плотности воздуха с высотой, также конвекционные потоки, ветер, степень влажности, температуры.

Особенности прогревания атмосферы в нижних слоях над различными участками земной поверхности приводят к тому, что нам иногда кажется Солнце заходящим не за линию горизонта, а за некоторую невидимую линию, находящуюся над горизонтом. При этом облачность отсутствует.

Рис. 8

Если в это время подняться на вершину холма или верхний этаж дома, то можно наблюдать ещё более странную картину: Солнце заходит за линию горизонта, но при этом диск оказывается как бы перерезанным горизонтальной «слепой полосой».

Такая картина наблюдается, если воздух около самой Земли оказывается холодным, а выше располагается слой тёплого воздуха. Переход от нижнего холодного слоя к верхнему тёплому может приводить к резкому спаду показателя преломления. Если предположить, что спад происходит скачком, ход лучей при переходе через границу между тёплым и холодным воздухом можно иллюстрировать рисунком 9.

Рис. 9

В точке О находится наблюдатель. h 1 – высота холодного слоя воздуха.

Рассмотрим Δ О 1 ОС. По теореме синусов: ;

Учтём, что О 1 О=R, O 1 C=R+h 1 . Тогда => sin α 2 =sin или. Отсюда следует, что по мере увеличения γ от 0° до 90°, угол α2 возрастает, достигая максимального значении я при γ=90°(sin 90°=1).

При α 2 =α 0 (предельному углу) луч, идущий из тёплого слоя воздуха, совпадёт с касательной к границе с холодным слоем. К наблюдателю не будут попадать лучи, которые войдут в холодный слой в точках, лежащих ниже точки В. Это объясняет явление, представленное на рисунке 8. Ширину «слепой полосы» определяет угол β. Если же человек поднимается на холм, (точка О и линия горизонта приподняты), то он может увидеть часть диска ниже «слепой полосы», которую теперь определяет угол 2β.

Рис. 10

Возникновение «слепой полосы»

Рисунок «слепой полосы»

Земная рефракция

Не менее интересна земная рефракция света, когда происходит искривление лучей, идущих к наблюдателю от объектов, расположенных на Земле. При этом происходит впечатляющее явление, получившее название миража. Самую простую форму миража часто удаётся наблюдать летом автомобилистам, едущим в жаркий день вдоль длинного и ровного шоссе.

Т.к. дорога сильно нагрета, прилегающий к ней воздух так же нагревается, а его плотность уменьшается. Коэффициент преломления воздуха внизу меньше, чем наверху.

Рис. 11

Глаз наблюдателя видит свет, идущий с неба из точки А, но у него создаётся впечатление, что свет идёт из точки В (рис. 11).

Рис. 12

Для возникновения верхнего миража (миража дальнего видения) необходимо, чтобы показатель преломления приповерхностного слоя воздуха достаточно быстро уменьшался с высотой, что возможно, когда, например, внизу располагается слой холодного воздуха, а над ним находится слой более тёплого воздуха.

Рис. 13

Глаз наблюдателя проецирует лучи в том направлении, по которому они входят в него. Большое количество миражей дальнего видения наблюдается на побережье Средиземного моря. Видимо, в этом повинна пустыня Сахара. Горячие массы воздуха поднимаются над ней, затем уносятся на север и создают благоприятные условия для возникновения миражей. Верхние миражи возникают и в северных странах, когда дуют тёплые южные ветры. Верхние слои атмосферы оказываются нагретыми, а нижние – охлаждёнными из-за наличия больших масс льдов и снега.

Иногда наблюдаются одновременно прямые и обратные изображения предметов.

Рис. 14

Моделирование двойного миража

Если за кюветой, в которую налиты раствор соли и вода, на расстоянии 20-30 см от неё наклонно расположить длинную белую спицу или полоску белой бумаги, то при наблюдении через кювету можно увидеть характерный изгиб в изображении спицы. Вблизи границы раздела жидкостей наблюдается два изображения конца спицы: нижнее – перевёрнутое, верхнее – прямое.

Рис. 15

Отрезку SM соответствует перевёрнутое изображение S´M´, образованное лучами, идущими ниже границы раздела жидкостей, и прямое S´M´´, образованное лучами, распространяющимися выше границы раздела.

Одновременное появление прямого и перевёрнутого изображений прямой спицы может служить моделированием двойного миража.

Так искривляется прямая бумажная полоска, если наблюдать её через оптически неоднородную среду.

Заключение

Преломление света охватывает очень широкий круг явлений природы, среди которых мы выделили те, которые смогли наблюдать сами. Особое место среди них занимают миражи. Они описаны в научных и художественных книгах. Некоторые из них имеют имена, о них сложены легенды. Многие миражи, особенно сверхдальние, когда изображение переносится за тысячи километров, являются весьма сложными оптическими явлениями. Для объяснения возникновения «Летучего голландца», «Фата-Моргана», хрономиражей недостаточно рассмотрение только рефракции света в атмосфере. Физический механизм таких явлений значительно сложнее. Объяснения некоторым из них до сих пор не существует. Возможно, что при определённых условиях в атмосфере образуются гигантские воздушные линзы, своеобразные светопроводы, вторичные миражи, т.е. миражи от миражей. Возможно также, что определённую роль в возникновении миражей играет ионосфера, которая может отражать световые волны.

Фотографии миражей

Список использованной литературы

  1. С. Толанский. Удивительные свойства света. Москва: Издательство «Мир», 1969.
  2. В.В. Майер. Простые опыты по криволинейному распространению света. Москва: Издательство «Наука», 1984.
  3. В.В. Майер. Полное отражение света в простых опытах. Москва: Издательство «Наука», 1986.
  4. Л.В. Тарасов, А.Н. Тарасова. Беседы о преломлении света. Москва: Издательство «Наука», 1982.
  5. В.Л. Булат. Оптические явления в природе. Москва: Издательство «Просвещение», 1974.
  6. Ф. Вуд. Искусственные миражи // Журнал «Квант». 1971. № 10. https://accounts.google.com

Класс: 11

Ум заключается не только в знании, но и в умении прилагать знание на деле.
Аристотель.

Цели урока:

  • проверить знание законов отражения;
  • научить измерять показатель преломления стекла, используя закон преломления;
  • развитие навыков самостоятельной работы с оборудованием;
  • развитие познавательных интересов при подготовке сообщения по теме;
  • развитие логического мышления, памяти, умение подчинять внимание выполнению заданий.
  • воспитание аккуратной работы с оборудованием;
  • воспитание сотрудничества в процессе совместного выполнения задач.

Межпредметные связи: физика, математика, литература.

Тип урока: изучение нового материала, совершенствование и углубление знаний, умений, навыков.

Оборудование:

  • Приборы и материалы для лабораторной работы: стакан высокий вместимостью 50 мл, пластина стеклянная (призма) с косыми гранями, пробирка, карандаш.
  • Чашка с водой, на дне которой монета; тонкий стеклянный стакан.
  • Пробирка с глицерином, стеклянная палочка.
  • Карточки с индивидуальным заданием.

Демонстрация: Преломление света. Полное внутреннее отражение.

ХОД УРОКА.

I. Организационный момент. Сообщение темы урока.

Учитель: Ребята, мы с вами перешли к изучению раздела физики «Оптика», в которой изучаются законы распространения света в прозрачной среде на основе представлений о световом луче. Сегодня вы узнаете, что закон преломления волн справедлив и для света.

Итак, цель сегодняшнего урока – изучение закона преломления света.

II. Актуализация опорных знаний.

1. Что такое световой луч? (Геометрическая линия, указывающая направление распространения света, называется световым лучом.)

Природа света – электромагнитная. Одним доказательством этого является совпадение величин скоростей электромагнитных волн и света в вакууме. При распространении света в среде он поглощается и рассеивается, а на границе раздела сред – отражается и преломляется.

Повторим законы отражения. (Раздаются индивидуальные задания на карточках).

Карточка 1.
Построить в тетради отраженный луч.

Карточка 2.
Будут ли параллельны отраженные лучи?

Карточка 3.
Постройте отражающую поверхность.

Карточка 4.
Угол между падающим лучом и отраженным лучом 60°. Чему равен угол падения? Начертить в тетради.

Карточка 5.
Человек ростом Н=1,8 м, стоя на берегу озера, видит в воде отражение Луны, находящейся под углом 30° к горизонту. На каком расстоянии от берега человек видит в воде отражение Луны?

2. Сформулируйте закон распространения света.

3. Какое явление называют отражением света?

4. Нарисуйте на доске световой луч, падающий на отражающую поверхность; угол падения; нарисуйте отраженный луч, угол отражения.

5. Почему оконные стекла издали кажутся темными, если на них смотреть в ясный день с улицы?

6. Как нужно расположить плоское зеркало, чтобы вертикальный луч стал отражаться горизонтально?

А в полдень лужи под окном
Так разливаются и блещут,
Что ярким солнечным пятном
По залу «зайчики» трепещут.
И.А. Бунин.

Объясните с точки зрения физики наблюдаемое явление, описанное Буниным в четверостишии.

Проверка выполнение заданий по карточкам.

III. Объяснение нового материала.

На границе раздела двух сред свет, падающий из первой среды, отражается в неё обратно. Если вторая среда прозрачная, то свет частично может пройти через границу сред. При этом, как правило, он меняет направление распространения, или испытывает преломление.

Преломление волн при переходе из одной среды в другую вызвано тем, что скорости распространения волн в этих средах различны.

Выполните опыты «Наблюдение преломления света».

  1. На середину дна пустого стакана поставьте карандаш вертикально и посмотрите на него так, чтобы его нижний конец, край стакана и глаз расположились на одной линии. Не меняя положения глаз, наливайте воду в стакан. Почему по мере повышения уровня воды в стакане видимая часть дна заметно увеличивается, а карандаш и дно кажутся приподнятыми?
  2. Расположите карандаш наклонно в стакане с водой и посмотрите на него сверху, а затем сбоку. Почему при наблюдении сверху карандаш у поверхности воды кажется надломленным?
    Почему при наблюдении сбоку часть карандаша, расположенная в воде, кажется сдвинутой в сторону и увеличенной в диаметре?
    Это все объясняется тем, что при переходе из одной прозрачной среды в другую световой луч преломляется.
  3. Наблюдение отклонения лучика лазерного фонарика при прохождении через плоскопараллельную пластину.

Падающий луч, преломленный луч и перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости; отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух сред, называемая относительным показателем преломления второй среды относительно первой.

Показатель преломления относительно вакуума называется абсолютным показателем преломления.

В сборнике задач найдите таблицу «Показатель преломления веществ». Обратите внимание, что стекло, алмаз имеют больший показатель преломления, чем вода. Как вы думаете почему? Твердые тела имеют более плотную кристаллическую решетку, свету труднее пройти через неё, поэтому вещества имеют больший показатель преломления.

Вещество, имеющее больший показатель преломления n 1 , называется оптически более плотной средой, если n 1 > n 2 . Вещество, имеющее меньший показатель преломления n 1 , называется оптически менее плотной средой, если n 1 < n 2 .

IV. Закрепление пройденной темы.

2. Решение задач №1395.

3. Лабораторная работа «Определение показателя преломления стекла».

Оборудование: Стеклянная пластина с плоскопараллельными гранями, дощечка, транспортир, три булавки, карандаш, угольник.

Порядок выполнения работы.

Эпиграфом к нашему уроку я подобрала слова Аристотеля «Ум заключается не только в знании, но и в умении прилагать знания на деле». Я думаю, что правильное выполнение лабораторной работы является доказательством этих слов.

V.

Давно уже осуществлены многие мечты древности, и немало сказочных волшебств сделалось достоянием науки. Улавливаются молнии, пробуравливаются горы, летают на «коврах-самолетах»… Нельзя ли изобрести и «шапку-невидимку», т.е. найти средство сделать тела совершенно невидимыми? Об этом мы сейчас побеседуем.

Идеи и фантазии английского романиста Г. Уэллса о человеке-невидимке спустя 10 лет немецкий анатом – профессор Шпальтегольц осуществил на практике – правда не для живых организмов, а для мертвых препаратов. Во многих музеях мира представлены теперь эти прозрачные препараты частей тела, даже целых животных. Способ приготовления прозрачных препаратов, разработанный в 1941 году профессором Шпальтегольцем, состоит в том, что после известной обработки беления и промывания – препарат пропитывается метиловым эфиром салициловой кислоты (это бесцветная жидкость с сильным лучепреломлением). Приготовленный таким образом препарат крысы, рыбы, частей человеческого тела погружают в сосуд, наполненный той же жидкостью. При этом, разумеется не стремятся достичь полной прозрачности, т.к. тогда они стали бы совершенно невидимыми, а потому и бесполезными для анатома. Но при желании можно достичь и этого. Во-первых, надо найти способ пропитать просветляющей жидкостью ткани живого организма. Во-вторых, препараты Шпальтегольца только прозрачны, но не невидимы лишь до тех пор, пока они погружены в сосуд с жидкостью. Но, допустим, что со временем удастся преодолеть оба эти препятствия, а следовательно, осуществить на практике мечту английского романиста.

Можно повторить опыт изобретателя со стеклянной палочкой – «палочкой-невидимкой». В колбу с глицерином через пробку вставляется стеклянная палочка, часть палочки, погруженная в глицерин, становится невидимой. Если колбу перевернуть, то невидимой становится другая часть палочки. Наблюдаемый эффект легко объясняется. Показатель преломления стекла почти равен показателю преломления глицерина, поэтому на границе данных веществ не происходит ни преломления, ни отражения света.

Полное отражение.

Если свет переходит из оптически более плотной среды в оптически менее плотную среду (на рисунке), то при некотором угле падения α0 угол преломления β становится равным 90°. Интенсивность преломленного луча в этом случае становится равной нулю. Свет, падающий на границу раздела двух сред полностью отражается от неё. Происходит полное отражение.

Угол падения α0 , при котором наступает полное внутреннее отражение света, называется предельным углом полного внутреннего отражения. При всех углах падения, равных и больших α0 , происходит полное отражение света.

Величина предельного угла находится из соотношения . Если n 2 =1 (вакуум, воздух), то .

Опыты «Наблюдение полного отражения света».

1. Расположите карандаш наклонно в стакане с водой, поднимите стакан выше уровня глаз и посмотрите снизу через стакан на поверхность воды. Почему при рассматривание снизу поверхность воды в стакане кажется зеркальной?

2. Опустите пустую пробирку в стакан с водой и посмотрите на неё сверху часть пробирки, погруженная в воду, кажется блестящей?

3. Проделайте дома опыт «Делаем монетку невидимой». Вам понадобится монетка, чаша с водой и прозрачный стакан. Положите монетку на дно чаши и заметьте, под каким углом она видна снаружи. Не сводя глаз с монетки, опускайте потихонечку сверху в чашу перевернутый пустой прозрачный стакан, держа его строго вертикально, чтобы вода не заливалась внутрь. Объясните на следующем уроке наблюдаемое явление.

(В некоторый момент монета исчезнет! Когда вы опускаете стакан, уровень воды в чаше поднимается. Теперь, чтобы выйти из чаши, луч должен дважды пройти границу раздела вода-воздух. После прохождения первой границы угол преломления будет значительным, так что на второй границе произойдет полное внутреннее отражение. Свет уже не выходит из чаши, поэтому вы и не видите монетки.)

Для границы раздела стекло-воздух угол полного внутреннего отражения равен: .

Предельные углы полного отражения.

Алмаз…24º
Бензин….45º
Глицерин…45º
Спирт…47º
Стекло различных сортов …30º-42º
Эфир…47º

Явление полного внутреннего отражения используется в волоконной оптике.

Испытывая полное внутреннее отражение, световой сигнал может распространятся внутри гибкого стекловолокна (световода). Свет может покидать волокно лишь при больших начальных углах падения и при значительном изгибе волокна. Использование пучка, состоящего из тысяч гибких стекловолокон (с диаметром каждого волокна от 0,002-0,01 мм), позволяет передавать из начала в конец пучка оптические изображения.

Волоконная оптика – система передачи оптических изображений с помощью стекловолокон (стекловодов).

Волоконно-оптические устройства повсеместно используются в медицине в качестве эндоскопов – зондов, вводимых в различные внутренние органы (бронхиальные трубы, кровеносные сосуды и т. д.) для непосредственного визуального наблюдения.

В настоящее время волоконная оптика вытесняет металлические проводники в системах передачи информации.

Увеличение несущей частоты передаваемого сигнала увеличивает объём передаваемой информации. Частота видимого света на 5-6 порядков превосходит несущую частоту радиоволн. Соответственно с помощью светового сигнала можно передавать в миллион раз больше информации, чем с помощью радиосигнала. Необходимая информация по волоконному кабелю передается в виде модулированного лазерного излучения. Волоконная оптика необходима для быстрой и качественной передачи компьютерного сигнала, содержащего большой объём передаваемой информации.

Полное внутреннее отражение используется в призматических биноклях, перископах, зеркальных фотоаппаратах, а также в световращателях (катафотах), обеспечивающих безопасную стоянку и движение автомобилей.

Подведение итогов.

На сегодняшнем уроке мы познакомились с преломлением света, узнали, что такое показатель преломления, определили показатель преломления плоскопараллельной стеклянной пластины, познакомились с понятием полного отражения, узнали о применение волоконной оптики.

Домашнее задание.

Мы рассмотрели преломление света на плоских границах. При этом размер изображения остается равным размеру предмета. На следующих уроках мы рассмотрим прохождение светового луча через линзы. Необходимо повторить из биологии строение глаза.

Список литературы:

  1. Г.Я. Мякишев. Б.Б. Буховцев . Учебник по физике 11 класс.
  2. В.П.Демкович, Л.П.Демкович . Сборник задач по физике.
  3. Я.И.Перельман . Занимательные задачи и опыты.
  4. И.Я. Ланина . Не уроком единым.

Самое обсуждаемое
Пути поступления ядовитых веществ в организм человека Основные характеристики железнодорожных цистерн Пути поступления ядовитых веществ в организм человека Основные характеристики железнодорожных цистерн
Международно-правовая охрана флоры и фауны Международно-правовая охрана флоры и фауны
Дэвид Хоффман - Олигархи Дэвид Хоффман - Олигархи


top