Парадоксы зенона. Парадокс зенона, или ахилл и черепаха Решение проблемы с парадоксом

Парадоксы зенона. Парадокс зенона, или ахилл и черепаха Решение проблемы с парадоксом

Именно в связи с открытием несоизмеримых величин в греческую математику проникло понятие бесконечности . В своих поисках общей единицы измерения для всех величин греческие геометры могли бы рассмотреть бесконечно делимые величины, но идея бесконечности приводила их в глубокое смятение. Если даже рассуждения о бесконечном проходили успешно, греки в своих математических теориях всегда пытались его обойти и исключить. Их затруднения перед явным выражением абстрактных понятий бесконечного и непрерывного, противоположных понятиям конечного и дискретного, ярко проявились в парадоксах Зенона Элейского.

Доводами Зенона были «апории» (тупики); они должны были продемонстрировать, что оба предположения заводят в тупик. Эти парадоксы известны под названием А х и л л е с, С т р е л а, Д и х о т о м и я (деление на два) и С т а д и о н. Они сформулированы так, чтобы подчеркнуть противоречия в понятиях движения и времени, но это вовсе не попытка разрешить такие противоречия.

Апория «Ахилл и черепаха» противостоит идее бесконечной делимости пространства и времени. Быстроногий Ахилл соревнуется в беге с черепахой и благородно предоставляет ей фору. Пока он пробежит расстояние, отделяющее его от точки отправления черепахи, последняя проползет дальше; расстояние между Ахиллом и черепахой сократилось, но черепаха сохраняет преимущество. Пока Ахилл пробежит расстояние, отделяющее его от черепахи, черепаха снова проползет еще немного вперед, и т.д. Если пространство бесконечно делимо, Ахилл никогда не сможет догнать черепаху. Этот парадокс построен на трудности суммирования бесконечного числа все более малых величин и невозможности интуитивно представить себе, что эта сумма равняется конечной величине.

Еще более явным этот момент становится в апории «Дихотомия»: прежде чем пройти некоторый отрезок, движущееся тело вначале должно пройти половину этого отрезка, затем половину половины, и так далее до бесконечности. Зенон мысленно строит ряд 1/2 + (1/2) 2 + (1/2) 3 +., сумма которого равна 1, но ему не удается интуитивно постичь содержание этого понятия. Современные представления о пределе и сходимости ряда позволяют утверждать, что начиная с некоторого момента расстояние между Ахиллом и черепахой станет меньше любого заданного числа, выбранного сколь угодно малым.

Парадокс «Стрела» основан на предположении, что пространство и время составлены из неделимых элементов, скажем «точек» и «моментов». В некий «момент» своего полета стрела находится в некоторой «точке» пространства в неподвижном состоянии. Поскольку это верно в каждый момент ее полета, стрела вообще не может находиться в движении.

Здесь затронут вопрос о мгновенной скорости. Какое значение следует придать отношению x/t пройденного расстояния x к интервалу времени t, когда величина t становится очень малой? Неспособные представить себе минимум, отличный от нуля, древние придали ему значение ноль. Ныне при помощи понятия предела правильный ответ находится немедленно: мгновенная скорость есть предел отношения x/t при t, стремящемся к нулю

Таким образом, все эти парадоксы связаны с понятием предела; оно стало центральным понятием исчисления бесконечно малых.

Парадоксы Зенона известны нам благодаря Аристотелю, который привел их в своей «Физике», чтобы подвергнуть критике. Он различает бесконечность относительно сложения и бесконечность относительно деления и устанавливает, что континуум бесконечно делим. Время тоже бесконечно делимо, и в конечный интервал времени можно пройти бесконечно делимое расстояние. Парадокс «Стрела», который «является следствием предположения, что время составлено из моментов», становится нелепым, если принять, что время бесконечно делимо.

Ни знание, ни мышление никогда не начинаются с полной истины - она их цель; мышление было бы ненужно, если бы были готовы истины.

Парадоксы Зенона (около 425 до н.э.) - одни из самых интересных задач в мире математики. На первый взгляд невероятно простые, они на самом деле затрагивают такие вопросы, как бесконечность, неделимость пространства и времени.

Прежде всего, хочется сказать, что Зенон Элейский - древнегреческий философ, представитель Элейской школы, ученик Парменида. И, как хороший ученик, Зенон сформулировал ряд апорий (парадоксов, неразрешимых положений) для доказательства учения Парменида о едином неподвижном бытии. Считается так же, что данные парадоксы были направлены против соперничавшей с элеатами школы, вероятнее всего, против пифагорейцев, которые полагали, что величина или протяженность составлена из неделимых частей. Аристотель приводит следующее пифагорейское определение точки: "Единица, имеющая положение" или "Единица, взятая в пространстве".

Наиболее известны апории о движении: Ахиллес и черепаха, Дихотомия, Стрела, Стадий. Впервые они с вариантами решения были упомянуты в работе Аристотеля.

Ахиллес и черепаха

В данном парадоксе Зенон утверждает, что Ахиллес никогда не сможет догнать идущую впереди него черепаху.

На первый взгляд, ответ очевиден. Ахиллес догонит черепаху. Но в решении таится загвоздка, над которой многие ученые спорят до сих пор и не могут сойтись во мнении.

Решить эту задачу можно с помощью геометрической прогрессии. Так, чтобы догнать черепаху, Ахиллесу с начала необходимо достичь места, откуда она начала свой путь. Для этого ему нужно пройти половину пути, затем половину половины пути и так далее. То есть каждый раз путь будет уменьшаться в 0,5 раза. Это и есть наша геометрическая прогрессия со знаменателем q=0,5. По знаменателю мы видим, что прогрессия бесконечно убывающая. Следовательно, путь Ахиллеса будет стремиться к нулю, но тогда он никогда не догонит черепахи!

Дихотомия

В данном парадоксе утверждается, что, прежде чем движущийся объект сможет преодолеть определенное расстояние, он должен пройти половину этого пути, затем половину оставшегося пути и так далее до бесконечности. Поскольку при повторных делениях данного расстояния пополам всякий отрезок остается конечным, а число таких отрезков бесконечно, данный путь невозможно пройти за конечное время. Более того, этот довод действителен для любого, сколь угодно малого расстояния, и для любой, сколь угодно большой скорости. Следовательно, невозможно какое бы то ни было движение. Бегун не в состоянии даже тронуться с места.

Стрела

В данной апории Зенон утверждает, что любая вещь либо находится в состоянии покоя, либо движется. Доказывал он это на примере стрелы. Зенон утверждал, что летящая стрела не движется, так как в определенный момент времени занимает пространство, равное себе, а такое пространство может занимать только недвижимый предмет.

На протяжении многих лет среди математиков и философов не утихали споры об апориях Зенона. Их до сих пор пытаются логически обосновать, доказать. Суть парадоксов Зенона заключается в том, что ни пространство, ни время нельзя рассматривать, как множество бесконечных чисел не взаимосвязанных друг с другом. Многие специалисты согласились со знаменитым анализом парадоксов Зенона, данным Бертраном Расселом. По мнению Рассела, парадоксы Зенона не были удовлетворительно решены вплоть до появления теории бесконечных множеств Георга Кантора.

Теория Кантора позволяет рассматривать бесконечные множества (будь то множества точек на прямой или мгновений времени) не как набор изолированных индивидуальных точек и событий, а как нечто целое. Решение парадоксов Зенона требует теории типа канторовской теории множеств, в которой наши интуитивные представления об отдельных точках и индивидуальных событиях объединены в систему - последовательную теорию бесконечных множеств.

Проблема – как, в конечном счете, устроены геометрические объекты, из чего они «состоят» – была важной проблемой для греческой философии. Эта проблема привлекла внимание и Зенона – представителя Элейской философской школы. Элейская школа выступала с парадоксальным учением, что существует только единое и неподвижное и неизменное бытие, повсюду одинаковое: хотя людям кажется, что бытие множественно и подвержено переменам, это мнение ведет к противоречиям и поэтому должно быть отброшено.

Наиболее известными и важными для математики стали сформулированные Зеноном четыре апории (т. е. парадокса), направленных против существования движения. По-видимому, первые две апории Зенона подразумевали, что пространство и время делимы до бесконечности, а другие две основывались на противоположном представлении, будто пространственная протяженность и временная длительность состоят из неделимых моментов. Зенон пытался показать, что каждое из двух противоположных воззрений в результате ведет к противоречию, а значит, должна быть отвергнута сама идея движения, которое представляет собой лишь иллюзию.

    Деление пополам

    Движущееся тело никогда не достигнет конца пути, потому что оно сначала должно дойти до середины пути, потом до середины оставшегося пути, потом опять до середины остатка и т. д. – таким образом, прежде чем дойти до конца пути, тело должно пройти бесконечное множество середин, а это потребует бесконечного времени.

    Ахиллес и черепаха

    Быстроногий Ахиллес никогда не сможет догнать медлительной черепахи, если в начале движения она находится на некотором расстоянии впереди Ахиллеса: пока Ахиллес достигнет черты, с которой стартовала черепаха, она сама проползет на некоторое расстояние, пусть и меньшее; пока Ахиллес пробежит это расстояние, черепаха продвинется еще дальше, и т. д.

    В каждый момент времени летящая стрела занимает равное самой себе пространство. Следовательно, она в течение некоторого времени покоится. Таким образом, она и вовсе не движется.

    По стадиону мимо группы равных тел А 1 , А 2 , А 3 , А 4 движутся в противоположные стороны с одинаковыми скоростями еще две такие же группы – В 1 , В 2 , В 3 , В 4 и Г 1 , Г 2 , Г 3 , Г 4 . Раз они движутся с равной скоростью, то в равное время пройдут равное расстояние. Если за некоторое время первое из тел В пройдет мимо всех Г, то за это же время первое из тел Г пройдет мимо половины тел А, а значит, оно пройдет лишь половину того расстояния, который прошло тело В, а значит – так как В и Г движутся с равными скоростями – оно прошло и половину того времени, за которое тело В прошло все тела Г. С другой стороны, за одно и то же время первое из тел Г пройдет мимо всех В, а первое из В пройдет лишь половину тел А, и значит, в два раза меньшее расстояние, затратив в два раза меньшее время, чем тело Г, прошедшее все тела В. Получается, что одно и то же время и вдвое длиннее, и вдвое короче, чем оно же само.

Хотя большинство философов не могли принять странные выводы Зенона о несуществовании движения, поставленные Зеноном проблемы заставили более пристально вглядываться в понятия, связанные с пространством и временем. Так, Аристотель полагал, что пространство и время не состоят из некоторого числа отдельных точек и моментов, но представляют собой особый тип сущего – нечто непрерывное, или, как еще говорят, континуум (лат. continuum – непрерывное). Пространственные и временные отрезки в действительности делимы до бесконечности, но делимы лишь потенциально, в том смысле, что любой отрезок можно разделить некоторой точкой, то, что осталось, тоже можно разделить, и т. д., но невозможно в какой-то момент реализовать бесконечное количество делений, – точно так же, как всякий раз возможно продлить имеющийся отрезок на некоторую величину, но нельзя считать бесконечное число таких продлений уже реализованным. Невозможно иметь в наличии бесконечную прямую, и нельзя сказать, что на отрезке уже находится бесконечное количество точек. Вот если бы в первой апории идущий человек каждый раз, проходя середину очередного отрезка, останавливался бы, отмечая эту середину, – тогда его движение не было бы непрерывным и он никогда бы не смог пройти весь отрезок. Решение Аристотеля было принято многими математиками: с подобными соображениями связано и разграничение Евклида между прерывными числами, с одной стороны, и непрерывными величинами, с другой стороны (см. урок 6). Тем не менее, на этом рассмотрение бесконечности в математике не закончилось: так, уже в XIX в. Г. Кантор развил теорию множеств, позволявшую рассматривать отрезок как бесконечное множество точек. Такое рассмотрение позволило открыть новые ценные результаты, а также поставить новые интересные проблемы, связанные, в частности, с некоторыми противоречиями, содержащимися в теории бесконечных множеств.

Кроме того, апории Зенона связаны и с рядом других вопросов, касающихся математики (суммирование бесконечного числа слагаемых, относительность движения, соотношение математической теории и физической реальности и т. д.).

Интересно, а Вы что думаете об этих апориях?

В истории развития квантовой механики было много попыток опровергнуть какие-либо из ее положений. Парадоксы возникают, когда зарождается новая область знаний. Они полезны, потому что попытки их конструктивного и содержательного объяснения углубляют понимание предмета. Однако большая часть парадоксов может быть объяснена при детальном рассмотрении и строгом математическом описании.

Парадокс Зенона

Зенон был автором нескольких апорий - рассуждений, которые, на первый взгляд, кажутся логичными, но противоречат здравому смыслу. Наиболее известным парадоксом его авторства является «Ахиллес и черепаха»: Ахиллес пытается догнать черепаху, но ему это не удается, если черепаха начала движение раньше него. Зенон объясняет это следующим образом: изначально между Ахиллесом и черепахой есть расстояние, и к тому моменту, как Ахиллес достиг положения черепахи, она уже сместилась из этой точки. Когда он пришел в следующее положение черепахи, она еще дальше сместилась, и так до бесконечности.

В рамках заданных положений парадокс объясняется так: у бесконечной суммы может быть конечный результат суммирования. Например, если мы добавляем к единице одну вторую, одну четвертую, одну шестнадцатую и так далее, то результатом суммы является конечная величина. В случае с этой апорией Зенона именно так и происходит. Однако этот факт стал понятен только со времен Ньютона, когда было сформулировано исчисление бесконечно малых величин, и, благодаря ему, мы понимаем, что расстояние между Ахиллесом и черепахой не может оставаться отличным от нуля.

Другая известная апория звучит следующим образом: летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент, то покоится она всегда. Мысль Зенона заключается в том, что состояние стрелы должно характеризоваться только своим положением в пространстве.

Разрешение второго парадокса появилось тоже после формулировки ньютоновой механики - стало понятно, что движение тел описывается дифференциальными уравнениями второго порядка, а именно: второй закон Ньютона говорит о том, что масса, умноженная на ускорение, равна силе. Ускорение - это скорость изменения скорости, это вторая производная от меняющегося во времени положения частицы. Следовательно, состояние стрелы характеризуется не только ее положением, но и скоростью в данный момент времени. Скорость определяет то, куда стрела сместится в следующий момент времени.

Парадокс Эйнштейна - Подольского - Розена

Одной из наиболее мистических концепций квантовой механики является ее вероятностная интерпретация - с ней спорили многие ученые. В частности, Эйнштейн вместе с Подольским и Розеном описали эксперимент, который выявляет, с их точки зрения, логическое противоречие в этой интерпретации. Существует много разных формулировок парадокса Эйнштейна - Подольского - Розена, но суть их всех одна и та же. Я расскажу об одной из стандартных формулировок, которая, однако, принадлежит не самим Эйнштейну, Подольскому и Розену.

Представим систему из двух фотонов, общая поляризация которых равна нулю, при этом оба фотона по отдельности не имеют определенной поляризации. Законы квантовой механики гласят, что в этом случае замкнутая система двух фотонов характеризуется волновой функцией, но при этом состояние каждого из фотонов по отдельности характеризуется не волновой функцией, а матрицей плотности. Говорят, что система двух фотонов описывается чистым состоянием, а каждый из фотонов по отдельности - смешанным.

Итак, фотоны отдалились друг от друга: к примеру, один из них улетел в Лондон, а второй - во Владивосток. Представим, что в Лондоне кто-то произвел измерение поляризации первого фотона. Тогда, в соответствии с законами квантовой механики, состояние первого фотона изменилось - произошла редукция его состояния. Из смешанного состояния он перешел в чистое. Например, с какой-то вероятностью он мог оказаться поляризованным в вертикальной плоскости.

Парадокс заключается в том, что в тот же самый момент, когда первый фотон в Лондоне перешел в чистое состояние, второй фотон во Владивостоке также изменил свое состояние - перешел из смешанного в чистое состояние, ровно с противоположной поляризацией. Это противоречит здравому смыслу, так как означает, что можно на расстоянии воздействовать на состояние второго фотона, тем самым нарушая принцип причинности.

Это наблюдение звучит еще более парадоксально, если учесть, что если в какой-то инерциальной системе отсчета два события одновременны, то обязательно есть инерциальная система отсчета, в которой второе событие происходит раньше первого. То есть редукция состояния фотона во Владивостоке в новой системе отсчета произойдет даже раньше того, как состояние первого фотона в Лондоне будет измерено.

Очень важно подчеркнуть, что эта ситуация отличается от эксперимента с черным и белым шарами, с которым ее часто сравнивают из-за недопонимания. В случае с шарами происходило бы следующее: два шара черного и белого цвета закрыты в коробке, и если разделить коробку пополам так, что в каждой части оказывается по шару, и отвезти одну во Владивосток, а другую в Лондон, то, открыв одну из них, мы сразу понимаем, какой шар во второй. В данном случае не было воздействия на второй шар, так как он с момента разделения коробки пополам имел определенный цвет. Ситуация с фотонами, как должно быть ясно из рассказа, совершенно другая.

Для меня полное разрешение этого парадокса все еще остается загадкой, но следует подчеркнуть, что никакого нарушения причинности в обсуждаемой ситуации не происходит именно из-за вероятностной природы квантовой механики. Дело в том, что, измеряя состояние первого фотона, мы не можем заставить его иметь ту поляризацию, которую нам захочется. В результате нашего измерения в Лондоне фотон может оказаться поляризованным тем или иным образом с какой-то вероятностью, а того, как он окажется поляризованным, мы не можем знать заранее. Соответственно, второй фотон окажется противоположно поляризованным с той же вероятностью. Поэтому для человека, наблюдающего за вторым фотоном во Владивостоке, его переход в чистое состояние с определенной поляризацией не будет являться передачей какого-то сообщения из Лондона. Однако станет ясно, что состояние первого фотона было измерено и система разомкнулась.

Парадокс кота Шредингера

Шредингер также спорил с вероятностной интерпретацией квантовой механики и в спорах на этот счет придумал следующий мысленный эксперимент: есть коробка, в которую помещены кот и специальный прибор, содержащий небольшое количество радиоактивного вещества, так что в течение часа с какой-то вероятностью может произойти распад одного из атомов этого вещества. Если распад происходит, срабатывает триггер, который запускает ток, разбивающий колбу с ядом, и яд убивает кота. Если распада не происходит, кот остается жив.

Парадокс заключается в следующем: квантовая механика утверждает, что до того, как произошло измерение, вы не знаете, распался атом или нет. Соответственно, и атом, и кот пребывают в смешанном состоянии, как пара фотонов в парадоксе Эйнштейна - Подольского - Розена. Точнее, если законы квантовой механики распространить на кота, то кот вместе с прибором и атомом составляют замкнутую систему, которая находится в чистом состоянии. При этом каждая из подсистем этой замкнутой системы характеризуется смешанным состоянием. Но что такое смешанное состояние для кота, когда он не жив и не мертв?

Фактически парадокс Шредингера в случае существования смешанного состояния кота показывал бы отсутствие параметра, по которому происходит переход от маленькой квантовой системы (коей является атом) к большой классической (такой как кот). Тем не менее такой параметр есть. Любая система - и классическая, и квантовая - характеризуется действием, и у маленькой квантовой системы действие и его градиенты сравнимы с постоянной Планка. Для большой классической системы и действие, и его градиенты намного больше этой постоянной. Например, камень (или луна) летит по определенной траектории не потому, что мы его постоянно измеряем, а потому, что коллективное движение составляющих его частиц описывается действием, градиенты которого и в пространстве, и во времени огромны по сравнению с постоянной Планка.

Итак, обсуждаемый парадокс можно решить, если вспомнить, что такое измерение в квантовой механике. Измерение - это воздействие большой классической системы (прибора) на маленькую квантовую (частицу). В данном случае кот и прибор, вместе взятые (да и по отдельности), являются большой классической системой, и измерение состояния радиоактивного атома происходит не в момент раскрытия коробки с котом, а в момент взаимодействия этой системы с частицей, которая с какой-то вероятностью распадется или не распадается. Следовательно, кот умрет или выживет еще до того, как откроется коробка.

Если вы хотите узнать больше о теоретической физике, записывайтесь на курс Эмиля Ахмедова «Теоретическая физика: от квантовой механики до теории поля», который состоится 20, 22 и 24 июня в Академии ПостНауки.

Зенон Элейский - греческий логик и философ, который в основном известен по парадоксам, названным в его честь. О его жизни известно не очень много. Родной город Зенона - Элея. Также в трудах Платона упоминалась встреча философа с Сократом.

Примерно в 465 году до н. э. Зенон написал книгу, где подробно изложил все свои идеи. Но, к сожалению, до наших дней она не дошла. Согласно легенде, философ погиб в бою с тираном (предположительно, главой Элеи Неархом). Всю информацию о Элейском собирали по крупицам: из трудов Платона (родившегося на 60 лет позже Зенона), Аристотеля и Диогена Лаэртия, написавшего три века спустя книгу биографий греческих философов. Упоминания о Зеноне есть и в трудах поздних представителей школы греческой философии: Фемистия (4 век н. э.), Александра Афродийского (3 век н. э.), а также Филопона и Симплиция (оба жили в 6 веке н. э.). Причём данные в этих источниках настолько хорошо согласуются между собой, что по ним можно реконструировать все идеи философа. В этой статье мы расскажем вам про парадоксы Зенона. Итак, приступим.

Парадоксы множества

Ещё с эпохи Пифагора пространство и время рассматривались исключительно с точки зрения математики. То есть считалось, что они составлены из множества моментов и точек. Однако у них есть свойство, которое проще ощутить, чем определить, а именно «непрерывность». Некоторые парадоксы Зенона доказывают, что её невозможно разделить на моменты или точки. Рассуждение философа сводится к следующему: «Допустим, что мы провели деление до конца. Тогда верен только один вариант из двух: либо мы получим в остатке минимально возможные величины или части, которые неделимы, но бесконечны в своём количестве, либо деление приведёт нас к частям без величины, так как непрерывность, являясь однородной, должна быть делимой при любых обстоятельствах. Она не может быть в одной части делима, а в другой - нет. К сожалению, оба результата довольно нелепы. Первый из-за того, что процесс деления не может закончиться, пока в остатке есть части, имеющие величину. А второй потому, что в подобной ситуации изначально целое было бы сформировано из ничего». Симплиций приписывал данное рассуждение Пармениду, но более вероятно, что его автор - Зенон. Идём далее.

Парадоксы Зенона о движении

Они рассматриваются в большей части книг, посвящённых философу, поскольку вступают в диссонанс со свидетельствами чувств элеатов. Применительно к движению, выделяют следующие парадоксы Зенона: «Стрела», «Дихотомия», «Ахилл» и «Стадий». И дошли они до нас благодаря Аристотелю. Давайте рассмотрим их подробней.

«Стрела»

Другое название - квантовый парадокс Зенона. Философ утверждает, что любая вещь либо стоит на месте, либо движется. Но ничто не пребывает в движении, если занимаемое пространство равное ему по протяжённости. В определённый момент движущаяся стрела находится на одном месте. Поэтому она не движется. Симплиций сформулировал этот парадокс в краткой форме: «Летящий предмет занимает равное себе место в пространстве, а то, что занимает равное себе место в пространстве, не движется. Следовательно, стрела покоится». Фемистий и Фелопон сформулировали аналогичные варианты.

«Дихотомия»

Занимает второе место списка «Парадоксы Зенона». Он гласит следующее: «Прежде чем объект, который начал движение, сможет пройти определённое расстояние, он должен преодолеть половину данного пути, далее половину оставшегося и т. д. до бесконечности. Так как при повторных делениях расстояния пополам отрезок всё время становится конечным, а число данных отрезков бесконечно, то это расстояние невозможно преодолеть за конечное время. Причём данный довод справедлив как в отношении малых расстояний, так и больших скоростей. Следовательно, любое движение невозможно. То есть бегун даже не сможет стартовать».

Этот парадокс очень подробно прокомментировал Симплиций, указав, что в данном случае за конечное время нужно совершить бесконечное количество касаний. «Тот, кто чего-либо касается, может вести счёт, но бесконечное множество нельзя перебрать или сосчитать». Или, как сформулировал Филопон, бесконечное множество неопределимо.

«Ахилл»

Также известен, как парадокс черепахи Зенона. Это наиболее популярное рассуждение философа. В движения Ахиллес состязается в беге с черепахой, которой на старте даётся небольшая фора. Парадокс в том, что греческому воину не удастся догнать черепаху, так как сначала он добежит до места её старта, а она уже будет на следующей точке. То есть черепаха постоянно будет впереди Ахиллеса.

Этот парадокс очень похож на дихотомию, но здесь бесконечное деление идёт сообразно прогрессии. В случае же дихотомии была регрессия. К примеру, тот же бегун не может стартовать, потому что не может покинуть своего местонахождения. А в ситуации с Ахиллом, даже если бегун тронется с места, он всё равно никуда не прибежит.

«Стадий»

Если сравнивать все парадоксы Зенона по степени сложности, то этот вышел бы победителем. Он труднее прочих поддаётся изложению. Симплиций и Аристотель описали это рассуждение фрагментарно, и нельзя со 100 % уверенностью полагаться на его надёжность. Реконструкция данного парадокса имеет следующий вид: пусть А1, А2, А3 и А4 являются неподвижными телами равного размера, а Б1, Б2, Б3 и Б4 - это тела того же размера, что и А. Тела Б движутся вправо так, что каждое Б минует А за одно мгновение, являющееся наименьшим промежутком времени из всех возможных. Пусть В1, В2, В3 и В4 - тела идентичные А и Б, и движутся относительно А влево, преодолевая каждое из тел за одно мгновение.

Очевидно, что В1 преодолело все четыре тела Б. Примем за единицу время, понадобившееся одному телу В для прохождения одного тела Б. В этом случае на всё передвижение понадобилось четыре единицы. Однако считалось, что два момента, прошедших за это передвижение, минимальны и потому - неделимы. Из этого следует, что четыре неделимых единицы равны двум неделимым единицам.

«Место»

Итак, теперь вы знаете основные парадоксы Зенона Элейского. Осталось рассказать о последнем, который известен под названием «Место». Данный парадокс Зенону приписывает Аристотель. Похожие рассуждения приводились в трудах Филопона и Симплиция в 6 веке н. э. Вот как Аристотель рассказывает об этой проблеме в своей Физике: «Если существует какое-то место, то как определить, где оно находится? Затруднение, к которому пришел Зенон, требует объяснения. Поскольку всё существующее имеет место, то становится очевидным, что и у места должно быть место, и т. д. до бесконечности». По мнению большинства философов, парадокс здесь появляется только потому, что ничто из существующего не может отличаться от самого себя и содержаться само в себе. Филопон считает, что, акцентируя внимание на самопротиворечивости понятия «места», Зенон хотел доказать несостоятельность теории множественности.


Самое обсуждаемое
Какие люди строили советский союз Какие люди строили советский союз
Советская архитектура: описание, история и интересные факты Направления советской архитектуры 20 30 х годов Советская архитектура: описание, история и интересные факты Направления советской архитектуры 20 30 х годов
Детская библиотека на современном этапе развития Детская библиотека на современном этапе развития


top