Вязкость или внутреннее трение. Явление внутреннего трения (вязкость) В чем проявляется внутреннее трение

Вязкость или внутреннее трение. Явление внутреннего трения (вязкость) В чем проявляется внутреннее трение

Трение. Вязкость - внутреннее трение

Трение - широко распространенное явление. Трение при соприкосновении твердых тел характеризуется коэффициентом трения скольжения (рис. 4.5, a ). В курсах теоретической механики изучают еще и трение качения (как всегда все сводится к связи поступательного и вращательного движений). В жидкостях и газах тела при движении испытывают вязкое трение (рис. 4.5, б ). Важно, что всякая сила трения связана со скоростью . Сила трения направлена противоположно скорости. Сила вязкого трения еще вдобавок и по величине пропорциональна скорости .

Рис. 4.5. Сила трения, действующая на движущееся тело: а - сила трения скольжения F тр = μN , μ - коэффициент трения (скольжения); б - сила вязкого трения F тр = γV = ηAV , γ - коэффициент трения (вязкого трения), η - коэффициент вязкости. Для шара величина А = 6πr и F тр = 6πηrV

Так как силы трения зависят от скорости, то они не консервативны. Работа этих сила изменяет внутреннюю энергию «трущейся пары», а не служит для преобразования кинетической и потенциальной энергий тела друг в друга, как работа консервативных сил (упругости, тяготения, кулоновской). Отметим, что неконсервативной является и сила давления газа F = рS , ведь давление газа (или жидкости) связано с молекулярными движениями, например, в газе давление пропорционально среднему квадрату скорости р ~ áV 2ñ.

Таким образом, явления, связанные с трением, находятся в связи и с механикой (скорость), и с молекулярной физикой(работа сил трения дает изменение внутренней энергии ). Такая двойственность приводит к изменениям в трактовке некоторых положений механики. Например, неприменимым становится положение об относительности покоя и движения . Когда действуют только консервативные силы, то невозможно различить равномерное движение или покой. Относительно Земли - покоимся (Кто не крутится на своем месте!), а относительно Солнца? Другое дело, если в игре есть и силы трения. Тогда при движении (даже равномерном) выделяется теплота. При учете сил трения равновесие сил наступает только при движении.

В конечном итоге это изменение возникает из-за того, что, согласно второму закону Ньютона, результат силы - ускорение, но сила трения может изменять равнодействующую силу так, что наступит равновесие и ускорения не будет. Именно путаница в этом вопросе не позволила открыть законы механики древним. Аристотель видел: две лошади - одна скорость повозки; три лошади - больше скорость повозки, следовательно, делал вывод Аристотель, скорость пропорциональна числу «лошадей», или пропорциональна силе тяги, или, вообще, пропорциональна силе. Аристотель считал, что скорость пропорциональна силе. В действительности, при увеличении силы тяги ускорение появляется, но из-за увеличения скорости увеличивается и сила трения, и очень быстро наступает равновесие при этой новой скорости. Аристотель перехода не видел. Во множестве других случаев «закон Аристотеля» не соответствовал наблюдениям. Кто движет планеты? Где лошади? Ньютон сделал «наукой» механику, когда сумел объединить и «земные», и «небесные» движения. Аристотель умел объяснять только «земные».

Возвращаясь к явлениям трения, можно сказать, что в этих явлениях всегда есть выделенная система отсчета - та, «обо что трется» тело, и силы трения зависят именно от скорости движения относительно этой системы. Сила трения «переводит» энергию движения во внутреннюю энергию именно тела (среды), о которое трется движущееся тело, и тем самым выделяет его, выделяет из всех других тел.

Итак, если силы консервативны - все движущиеся друг относительно друга с постоянными скоростями системы отсчета (они называются инерциальными ) равноправны, покой и движение с постоянной скоростью - относительны. Если силы не консервативны - зависят от скорости, то есть выделенная система отсчета - та, во внутреннюю энергию которой переходит энергия движения. Теперь покой и движение относительно этой выделенной системы можно легко различить. Если есть «перекачка» энергии движения во внутреннюю - есть движение, нет перекачки - покой.

Рассматривая только трение при движении в жидкости или газе, используют характеристику такого явления, называемую коэффициентом вязкости , часто говорят - просто вязкость η. Вязкость характеризует именно свойства среды - жидкости или газа. Отсюда следует, что вязкость не зависит от свойств движущегося тела (размеров или скорости, или еще чего-нибудь), а зависит только от характеристик среды (давления, температуры, либо еще каких-то), в которой происходит движение. В конечном итоге коэффициент вязкости зависит от свойств молекул среды, в которой движется тело.

Эти свойства легче всего выявить, рассматривая явление внутреннего трения . Действительно, не все ли равно, движется тело относительно газа (жидкость) или одна часть жидкости (газа) движется относительно другой. И в том, и в другом случае должно наблюдаться явление перекачки энергии макроскопического движения (движения чего-то «большого» - тела или части жидкости) во внутреннюю энергию - движения молекул - микроскопических (малых) частиц.

Явление внутреннего трения (часто называемое явлением вязкости ) связано с возникновением сил трения между слоями газа или жидкости , перемещающимися параллельно друг другу с различными по величине скоростями, при этом происходит выравнивание скоростей . Силы трения , которыепри этом возникают, направлены по касательной к поверхности соприкосновения слоев .

Рассмотрим механизм вязкости газов. Почему соседние слои тормозят друг друга при своем движении? Следующая модель поможет разобраться в этом: представим лодки, движущиеся вниз по реке с разными скоростями (рис. 6.6 ).

Рис. 4.6. К объяснению механизма вязкости. Подробности в тексте

Чем ближе лодки к центру реки, тем больше стараются гребцы. На лодках перевозят арбузы. Торговки решают обменяться товаром. Арбузы имеют скорость лодки, в которой они находятся. Поэтому при перебрасывании «быстрых» арбузов в медленно движущиеся лодки последние ускоряются; быстрые же лодки замедляют свое движение при попадании в них медленно движущихся арбузов.

Явление внутреннего трения подчиняется закону Ньютона для вязкого трения(часто готворят и «формула Ньютона для вязкого трения» ):

После всего сказанного эта формула кажется составленной просто «руками». Действительно: коэффициент вязкости η показывает происхождение этой силы от «трения», dV /dx показывает изменение скорости движения слоев друг относительно друга, ведь dV /dx изменение скорости на единицу длины - это предел от (V 2 – V 1)/(x 2 – х 1). Очевидно, что формула Ньютона имеет вид уравнения переноса (тип закона Фика) (4.13 ). Справа - производная (градиент), слева должен быть поток . Поток - это что-то протекающее через единицу площади S в единицу времени Δt . Площадь на нужном месте в формуле есть - стоит F /S . Следовательно, хорошо бы представить и силу как производную от «чего-то» по времени. Вспоминая второй закон Ньютона, можно увидеть, что силу можно представить как

То есть сила есть производная от импульса .

Таким образом, формула Ньютона - формула для переноса импульса . На молекулярном уровне отсюда следует, что трение между текущими (движущимися) с разными скоростями слоями жидкости или газа состоит в передаче молекул от слоя с большей скоростью в слой с меньшей скоростью (рис. 4.7 ).

Рис. 4.7. К объяснению закона вязкости. V + = V 0 + DV = V + l tgα

Все явления переноса в газе аналогичны. Это наглядно видно из соответствующих рисунков (сравните рис. 4.2 , 4.4 и 4.7 ). Диффузии соответствует разность концентраций, теплопроводности - разность внутренних энергий, внутреннему трению (вязкости) - разность скоростей в перпендикулярном силе трения (потоку импульса) направлении. Объемы же, из которых молекулы за время Δt успевают поменять «место жительства», одинаковы. Поэтому, рассчитывая поток, так же как это делалось уже дважды, найдем поток импульса:

Сравнивая с формулой Ньютона, найдем, что коэффициент вязкости имеет вид:

Эта формула хороша для газов и позволяет анализировать зависимости коэффициента вязкости от параметров газа. Для жидкостей - коэффициент вязкости - характеристика жидкости приводится в справочниках.

Часто вместо коэффициента вязкости вводят так называемый коэффициент кинематической вязкости :

В итоге закон трения (закон Ньютона) имеет форму

Величина Р - поток импульса.

Подводя итоги изучения сил вязкого трения, отметим еще раз, что сила, действующая на «тело», пропорциональна скорости V , а сила, действующая на «слой», пропорциональна производной от скорости dV /dx . Для жидкостей с большой вязкостью, когда отдельный слой превращается как бы в «плоское тело», это различие несущественно. Действительно, в таких условиях:

где а - толщина пограничного слоя, толщина жидкости, на которой значительно меняется скорость.

Силу вязкого трения, создаваемую движущимся в жидкости или газе телом (рис. 4.5, б ), называют силой Стокса . Тело приводит в движение жидкость перед собой, а вдали от тела жидкость покоится. Так возникает разность скоростей между слоями. Запись силы Стокса (формула Стокса ) получается прямо из закона Ньютона для вязкого трения (4.33 ). Применим метод анализа размерностей.

Производную в этой формуле заменим величиной той же размерности V /a , где а - как обычно (см. формулу (4.39 )), толщина жидкости, на которой значительно меняется скорость. После такой замены в законе Ньютона для силы вязкого трения возникает величина S /a , имеющая размерность длины (м). В решаемой задаче имеется только одна величина такой размерности, это размер тела. Если тело - шар, то это радиус шара r (см. рис. 4..5, б ). Теперь, когда все размерные зависимости определены, остается неопределенным числовой множитель. Оказывается, что этот множитель зависит от формы тела. Для шара он равен 6π. Получаем окончательно формулу Стокса :

F = 6πr ηV . (4.40)

Вязкостью называется способность жидкости оказывать сопротивление сдвигающим усилиям. Это свойство жидкости проявляется лишь при ее движении. Допустим, что некоторое количество жидкости заключено между двумя плоскими неограниченными параллельными пластинами (рис. 2.1); расстояние между ними – п; скорость движения верхней пластины относительно нижней – υ.

Опыт показывает, что слой жидкости, непосредственно прилегающий к стенке, прилипает к ней. Отсюда следует, что скорость движения жидкости, прилегающей к нижней стенке, равна нулю, а к верхней – υ. Промежуточные слои движутся со скоростью, постепенно возрастающей от 0 до υ.

Рис. 2.1.

Таким образом, существует разность скоростей между соседними слоями, и возникает взаимное скольжение слоев, которое приводит к проявлению силы внутреннего трения.

Чтобы перемещать одну пластину относительно другой, необходимо приложить к движущейся пластине некоторую силу Г, равную силе сопротивления жидкости в результате внутреннего трения. Ньютон установил, что эта сила пропорциональна скорости и, поверхности соприкосновения S и обратно пропорциональна расстоянию между пластинами n , т.е.

где μ – коэффициент пропорциональности, называемый динамической вязкостью (или динамическим коэффициентом вязкости).

Для большего уточнения этой зависимости ее следует отнести к бесконечно малому расстоянию между слоями жидкости, тогда

где Δ υ – относительная скорость движения соседних слоев; Δп – расстояние между ними. Или в пределе

Последнее выражение представляет закон Ньютона для внутреннего трения. Знак плюс или минус принимается в зависимости от знака градиента скорости dv/dn.

Так как τ = Т/S есть касательное напряжение сдвига, то закону Ньютона можно придать более удобный вид:

Касательное напряжение, возникающее в жидкости, пропорционально градиенту скорости в направлении, перпендикулярном вектору скорости и площадке, по которой оно действует.

Коэффициент пропорциональности µ характеризует физические свойства жидкости и называется динамической вязкостью. Из формулы Ньютона следует, что

Из этого выражения вытекает физический смысл коэффициента р: если , то µ = τ.

В гидродинамике вводят в рассмотрение величину

называемую кинематической вязкостью (кинематическим коэффициентом вязкости).

Динамическая вязкость µ с ростом температуры уменьшается, а с увеличением давления увеличивается. Однако влияние давления для капельных жидкостей незначительно. Динамическая вязкость газов с увеличением температуры возрастает, а от изменения давления меняется незначительно.

Закон Ньютона для внутреннего трения в жидкостях существенно отличается от законов трения в твердых телах. В твердых телах существует трение покоя. Кроме того, сила трения пропорциональна нормальному давлению и мало зависит от относительной скорости движения. В жидкости, подчиняющейся закону Ньютона, при отсутствии относительной скорости движения слоев сила трения отсутствует. Сила трения не зависит от давления (нормального напряжения), а зависит от относительной скорости перемещения слоев. Жидкости, подчиняющиеся закону Ньютона, называются ньютоновскими. Однако существуют жидкости, которые не подчиняются этому закону (аномальные жидкости). К их числу относятся различного вида эмульсии, коллоидные растворы, представляющие собой неоднородные тела, состоящие из двух фаз (твердой и жидкой).

Так, глинистые растворы, применяемые при бурении нефтяных скважин, некоторые сорта нефтей вблизи температуры их застывания не подчиняются закону Ньютона. Опытами установлено, что в подобных жидкостях движение наступает после того, как касательные напряжения достигнут некоторого значения, называемого начальным напряжением сдвига.

Для таких жидкостей справедлива более общая зависимость для τ (формула Бингема):

где τ0 – начальное напряжение сдвига; η – структурная вязкость.

Таким образом, эти жидкости при напряжении τ < τ0 ведут себя как твердые тела и начинают течь лишь при τ ≥ τ0. В дальнейшем градиент скорости пропорционален не т, а разнице τ -τ0.

Графически зависимость между и τ изображается кривой 1 для ньютоновских жидкостей и кривой 2 – для аномальных жидкостей (рис. 2.2).

Рис. 2.2. Зависимость dv/dn от касательного напряжения

При движении структурных жидкостей по трубопроводу наблюдаются три режима их движения: структурный, ламинарный, турбулентный.

Структурный. Для начала движения необходим некоторый начальный перепад давления в трубопроводе Δр 0, после чего жидкость отделяется от стенок и начинает двигаться как одно целое (как твердое тело).

Ламинарный. При увеличении перепада давления Δр будет увеличиваться скорость движения жидкости и вблизи стенок начнет развиваться ламинарный режим течения. По мере дальнейшего увеличения скорости область ламинарного режима будет расширяться, затем структурный режим полностью переходит в ламинарный.

Турбулентный. При дальнейшем увеличении скорости ламинарный режим переходит в турбулентный (см. параграф 6.1).

Зависимость вязкости от температуры и давления. Вискозиметры

Вязкость капельной жидкости в значительной степени зависит от температуры и в меньшей степени – от давления. Зависимостью вязкости от давления в большинстве случаев пренебрегают. Например, при давлениях до 50 105 Па вязкость изменяется не более чем на 8,5%. Исключением является вода при температуре 25°С – ее вязкость с увеличением давления незначительно уменьшается. Другая особенность воды состоит в том, что ее плотность с уменьшением температуры до +4°С возрастает, а при дальнейшем уменьшении температуры (от +4 до 0°С) – уменьшается. Этим объясняется тот факт, что вода замерзает с поверхности. При температуре около 0°С она имеет наименьшую плотность, и слои жидкости, имеющие такую температуру, как наиболее легкие всплывают на поверхность, где и происходит замерзание воды, если ее температура оказывается меньшей 0°С.

При атмосферном давлении вязкость воды в зависимости от температуры определяется по формуле Пуазейля

где v – кинематическая вязкость; µ – динамическая вязкость; ρ – плотность воды при данной температуре; t – температура воды.

Вязкость жидкости определяют при помощи приборов, называемых вискозиметрами. Для жидкостей, более вязких, чем вода, применяют вискозиметр Энглера. Этот прибор состоит из емкости с отверстием, через которое при температуре 20°С определяют время слива дистиллированной воды Т 0 и жидкости T , вязкость которой требуется определить. Отношение величин Т и Т 0 составляет число условных градусов Энглера:

После определения вязкости жидкости в условных градусах Энглера кинематическая вязкость (см2/с) находится по эмпирической формуле Убеллоде

Полученные по этой формуле значения v хорошо согласуются с опытными данными.

Внутреннее трение возникает в жидкости вследствие взаимодействия молекул. В отличие от внешнего трения, возникающего в месте соприкосновения двух тел, внутреннее трение имеет место внутри движущейся среды между слоями с различными скоростями движения.

При скоростях выше критической скорости слои, близкие к стенкам, заметно отстают вследствие трения от средних, возникают значительные разности скоростей, что влечёт за собой образование вихрей.

Итак, вязкость , или внутреннее трение в жидкостях , обусловливает не только потери энергии на трение, но ещё и новые образования – вихри .

Ньютон установил, что сила вязкости, или внутреннего трения, должна быть пропорциональна градиенту скорости (величина, показывающая, как быстро меняется скорость при переходе от слоя к слою в направлении , перпендикулярном направлению движения слоёв) и площади , на которой обнаруживается действие этой силы. Таким образом, мы приходим к формуле Ньютона:

, (I.149)

где - коэффициент вязкости , или внутреннего трения , постоянное число, характеризующее данную жидкость или газ.

Чтобы выяснить физический смысл , положим в формуле (I.149) сек –1 , м 2 ; тогда численно ; следовательно, коэффициент вязкости равен силе трения , которая возникает в жидкости между двумя площадками в м 2 , если между ними градиент скорости равен единице .

Единица СИ динамической вязкости = паскаль - секунда (Па·с).

(Па·с) равен динамической вязкости среды, в которой при ламинарном течении и градиенте скорости с модулем, равным (м/с) на (м), возникает сила внутреннего трения в (Н) на (м 2) поверхности касания слоёв ( Па·с= Н·с/м 2).

Единица, допускавшаяся к применению до 1980 г.: пуаз (П), по имени французского учёного Пуазейля, который один из первых (1842 г.) начал точные исследования вязкости при течении жидкостей в тонких трубках (соотношение между единицами динамической вязкости: 1 П = 0,1 Па·с)

Пуазейль , наблюдая движение жидкостей в капиллярных трубках, вывел закон , согласно которому:

, (I.150)

где - объём жидкости, протекающий по трубке за время ;

Радиус трубки (с гладкими стенками);

Разность давлений на концах трубки;

Продолжительность протекания жидкости;

Длина трубки.

Чем больше вязкость, тем большие силы внутреннего трения в ней возникают. Вязкость зависит от температуры, причём характер этой зависимости для жидкостей и газов различен:

q динамическая вязкость жидкостей резко уменьшается с повышением температуры;

q динамическая вязкость газов увеличивается с повышением температуры.

Кроме понятия динамической вязкости применяются понятия текучести и кинематической вязкости .

Текучестью называется величина, обратная динамической вязкости.

Единица СИ текучести =м 2 /(Н·с)=1/(Па·с).

Кинематической вязкостью называется отношение динамической вязкости к плотности среды.

Единица СИ кинематической вязкости м 2 /с.

До 1980 г. к применению допускалась единица: стокс (Ст). Соотношение между единицами кинематической вязкости:

1 стокс (Ст) = 10 –4 м 2 /с.

Когда тело шарообразной формы движется в жидкости, ему приходится преодолевать силу трения:

. (I.153)

Формула (I.153) представляет собой закон Стокса .

На законе Стокса основано определение вязкости жидкости вискозиметром Гёпплера. В трубу определённого диаметра, заполненную жидкостью, вязкость которой надо определить, опускают шарик и измеряют скорость его падения, которая и является мерой вязкости жидкости.

Английский учёный О. Рейнольдс в 1883 г. в результате своих исследований пришёл к заключению, что критерием характеризующем движение жидкостей и газов, могут служить числа, определяемые безразмерной совокупностью величин, относящихся к данной жидкости и данному её движению. Состав этих отвлечённых чисел, называемых числами Рейнольдса , таков.

Вязкость (внутреннее трение) (англ . viscosity) - одно из явлений переноса, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. Механизм внутреннего трения в жидкостях и газах заключается в том, что хаотически движущиеся молекулы переносят импульс из одного слоя в другой, что приводит к выравниванию скоростей - это описывается введением силы трения. Вязкость твёрдых тел обладает рядом специфических особенностей и рассматривается обычно отдельно. Основной закон вязкого течения был установлен И. Ньютоном (1687): В применении к жидкостям различают вязкость:

  • Динамическая (абсолютная) вязкость µ – сила, действующая на единичную площадь плоской поверхности, которая перемещается с единичной скоростью относительно другой плоской поверхности, находящейся от первой на единичном расстоянии. В системе СИ динамическая вязкость выражается в Па×с (паскаль-секунда), внесистемная единица П (пуаз).
  • Кинематическая вязкость ν – отношение динамической вязкости µ к плотности жидкости ρ .
ν= µ / ρ ,
  • ν , м 2 /с – кинематическая вязкость;
  • μ , Па×с – динамическая вязкость;
  • ρ , кг/м 3 – плотность жидкости.

Сила вязкого трения

Это явление возникновения касательных сил, препятствующих перемещению частей жидкости или газа друг по отношению к другу. Смазка между двумя твердыми телами заменяет сухое трение скольжения трением скольжения слоев жидкости или газа по отношению друг к другу. Скорость частиц среды плавно меняется от скорости одного тела до скорости другого тела.

Сила вязкого трения пропорциональна скорости относительного движения V тел, пропорциональна площади S и обратно пропорциональна расстоянию между плоскостями h .

F=-V S / h ,

Коэффициент пропорциональности, зависящий от сорта жидкости или газа, называют коэффициентом динамической вязкости . Самое важное в характере сил вязкого трения то, что при наличии любой сколь угодно малой силы тела придут в движение, то есть не существует трения покоя . Качественно существенное отличие сил вязкого трения от сухого трения

Если движущееся тело полностью погружено в вязкую среду и расстояния от тела до границ среды много больше размеров самого тела, то в этом случае говорят о трении или сопротивлении среды . При этом участки среды (жидкости или газа), непосредственно прилегающие к движущемуся телу, движутся с такой же скоростью, как и само тело, а по мере удаления от тела скорость соответствующих участков среды уменьшается, обращаясь в нуль на бесконечности.

Сила сопротивления среды зависит от:

  • ее вязкости
  • от формы тела
  • от скорости движения тела относительно среды.

Например, при медленном движении шарика в вязкой жидкости силу трения можно найти, используя формулу Стокса:

F=-6 R V,

Качественно существенное отличие сил вязкого трения от сухого трения , кроме прочего, то, что тело при наличии только вязкого трения и сколь угодно малой внешней силы обязательно придет в движение, то есть для вязкого трения не существует трения покоя, и наоборот - под действием только вязкого трения тело, вначале двигавшееся, никогда (в рамках макроскопического приближения, пренебрегающего броуновским движением) полностью не остановится, хотя движение и будет бесконечно замедляться.

Вязкость газов

Вязкость газов (явление внутреннего трения) - это появление сил трения между слоями газа , движущимися друг относительно друга параллельно и с разными по величине скоростями. Вязкость газов увеличивается с ростом температуры

Взаимодействие двух слоев газа рассматривается как процесс, в ходе которого от одного слоя к другому передается импульс. Сила трения на единицу площади между двумя слоями газа, равная импульсу, передаваемому за секунду от слоя к слою через единицу площади, определяется законом Ньютона:


τ=-η dν / dz

где:
dν / dz - градиент скорости в направлении перпендикулярном направлению движения слоев газа.
Знак минус указывает, что импульс переносится в направлении убывания скорости.
η - динамическая вязкость.


η= 1 / 3 ρ(ν) λ, где:

ρ - плотность газа,
(ν) - средняя арифметическая скорость молекул
λ - средняя длина свободного пробега молекул.

Вязкость некоторых газов (при 0°C)

Вязкость жидкости

Вязкость жидкости - это свойство, проявляющееся только при движении жидкости, и не влияющее на покоящиеся жидкости. Вязкое трение в жидкостях подчиняется закону трения, принципиально отличному от закона трения твёрдых тел, т.к. зависит от площади трения и скорости движения жидкости.
Вязкость – свойство жидкости оказывать сопротивление относительному сдвигу ее слоев. Вязкость проявляется в том, что при относительном перемещении слоев жидкости на поверхностях их соприкосновения возникают силы сопротивления сдвигу, называемые силами внутреннего трения, или силами вязкости. Если рассмотреть то, как распределяются скорости различных слоёв жидкости по сечению потока, то можно легко заметить, что чем дальше от стенок потока, тем скорость движения частиц больше. У стенок потока скорость движения жидкости равна нулю. Иллюстрацией этого является рисунок, так называемой, струйной модели потока.

Медленно движущийся слой жидкости «тормозит» соседний слой жидкости, движущийся быстрее, и наоборот, слой, движущийся с большей скоростью, увлекает (тянет) за собой слой, движущийся с меньшей скоростью. Силы внутреннего трения появляются вследствие наличия межмолекулярных связей между движущимися слоями. Если между соседними слоями жидкости выделить некоторую площадку S , то согласно гипотезе Ньютона:

F=μ S (du / dy),
  • μ - коэффициент вязкого трения;
  • S – площадь трения;
  • du/dy - градиент скорости

Величина μ в этом выражении является динамическим коэффициентом вязкости , равным:

μ= F / S 1 / du / dy , μ=τ 1 / du / dy ,
  • τ – касательное напряжение в жидкости (зависит от рода жидкости).

Физический смысл коэффициента вязкого трения - число, равное силе трения, развивающейся на единичной поверхности при единичном градиенте скорости.

На практике чаще используется кинематический коэффициент вязкости , названный так потому, что в его размерности отсутствует обозначение силы. Этот коэффициент представляет собой отношение динамического коэффициента вязкости жидкости к её плотности:

ν= μ / ρ ,

Единицы измерения коэффициента вязкого трения:

  • Н·с/м 2 ;
  • кГс·с/м 2
  • Пз (Пуазейль) 1(Пз)=0,1(Н·с/м 2).

Анализ свойства вязкости жидкости

Для капельных жидкостей вязкость зависит от температуры t и давления Р , однако последняя зависимость проявляется только при больших изменениях давления, порядка нескольких десятков МПа.

Зависимость коэффициента динамической вязкости от температуры выражается формулой вида:

μ t =μ 0 e -k t (T-T 0) ,
  • μ t - коэффициент динамической вязкости при заданной температуре;
  • μ 0 - коэффициент динамической вязкости при известной температуре;
  • Т - заданная температура;
  • Т 0 - температура, при которой измерено значение μ 0 ;
  • e

Зависимость относительного коэффициента динамической вязкости от давления описывается формулой:

μ р =μ 0 e -k р (Р-Р 0) ,
  • μ Р - коэффициент динамической вязкости при заданном давлении,
  • μ 0 - коэффициент динамической вязкости при известном давлении (чаще всего при нормальных условиях),
  • Р - заданное давление,;
  • Р 0 - давление, при которой измерено значение μ 0 ;
  • e – основание натурального логарифма равное 2,718282.

Влияние давления на вязкость жидкости проявляется только при высоких давлениях.

Ньютоновские и неньютоновские жидкости

Ньютоновскими называют жидкости, для которых вязкость не зависит от скорости деформации. В уравнении Навье - Стокса для ньютоновской жидкости имеет место аналогичный вышеприведённому закон вязкости (по сути, обобщение закона Ньютона, или закон Навье).

Внутреннее трение I Вну́треннее тре́ние II Вну́треннее тре́ние

в твёрдых телах, свойство твёрдых тел необратимо превращать в теплоту механическую энергию, сообщенную телу в процессе его деформирования. В. т. связано с двумя различными группами явлений - неупругостью и пластической деформацией.

Неупругость представляет собой отклонение от свойств упругости при деформировании тела в условиях, когда остаточные деформации практически отсутствуют. При деформировании с конечной скоростью в теле возникает отклонение от теплового равновесия. Например, при изгибе равномерно нагретой тонкой пластинки, материал которой расширяется при нагревании, растянутые волокна охладятся, сжатые - нагреются, вследствие чего возникнет поперечный перепад температуры, т. е. упругое деформирование вызовет нарушение теплового равновесия. Последующее выравнивание температуры путём теплопроводности представляет собой процесс, сопровождаемый необратимым переходом части упругой энергии в тепловую. Этим объясняется наблюдаемое на опыте затухание свободных изгибных колебаний пластинки -так называемый Термоупругий эффект . Такой процесс восстановления нарушенного равновесия называется релаксацией (См. Релаксация).

При упругом деформировании сплава с равномерным распределением атомов различных компонентов может произойти перераспределение атомов в веществе, связанное с различием их размеров. Восстановление равновесного распределения атомов путём диффузии (См. Диффузия) также представляет собой релаксационный процесс. Проявлениями неупругих, или релаксационных, свойств, кроме упомянутых, являются упругое Последействие в чистых металлах и сплавах, упругий Гистерезис и др.

Деформация, возникающая в упругом теле, зависит не только от приложенных к нему внешних механических сил, но и от температуры тела, его химического состава, внешних магнитных и электрических полей (магнито- и электрострикция), величины зерна и т.д. Это приводит к многообразию релаксационных явлений, каждое из которых вносит свой вклад во В. т. Если в теле одновременно происходит несколько релаксационных процессов, каждый из которых можно характеризовать своим временем релаксации (См. Релаксация) τ i , то совокупность всех времён релаксации отдельных релаксационных процессов образует так называемый релаксационный спектр данного материала (рис. ), характеризующий данный материал при данных условиях; каждое структурное изменение в образце меняет релаксационный спектр.

В качестве методов измерения В. т. применяются: изучение затухания свободных колебаний (продольных, поперечных, крутильных, изгибных); изучение резонансной кривой для вынужденных колебаний (См. Вынужденные колебания); относительное рассеяние упругой энергии за один период колебаний. Изучение В. т. твёрдых тел представляет собой новую быстро развивающуюся область физики твёрдого тела, является источником важных сведений о процессах, возникающих в твёрдых телах, в частности в чистых металлах и сплавах, подвергнутых различным механическим и тепловым обработкам.

В. т. при пластической деформации. Если силы, действующие на твёрдое тело, превосходят предел упругости и возникает пластическое течение, то можно говорить о квазивязком сопротивлении течению (по аналогии с вязкой жидкостью). Механизм В. т. при пластической деформации существенно отличается от механизма В. т. при неупругости (см. Пластичность , Ползучесть). Различие в механизмах рассеяния энергии определяет и разницу в значениях вязкости, отличающихся на 5-7 порядков (вязкость пластического течения, достигающая величин 10 13 -10 8 н ·сек/м 2 , всегда значительно выше вязкости, вычисляемой из упругих колебаний и равной 10 7 - 10 8 н ·сек/м 2). По мере роста амплитуды упругих колебаний всё большую роль в затухании этих колебаний начинают играть пластические сдвиги, и величина вязкости растёт, приближаясь к значениям пластической вязкости.

Лит.: Новик А. С., Внутреннее трение в металлах, в кн.: Успехи физики металлов. Сб. статей, пер. с англ., ч. 1, М., 1956; Постников В. С., Релаксационные явления в металлах и сплавах, подвергнутых деформированию, «Успехи физических наук», 1954, т. 53, в. 1, с. 87; его же, Температурная зависимость внутреннего трения чистых металлов и сплавов, там же, 1958, т. 66, в. 1, с. 43.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Внутреннее трение" в других словарях:

    1) свойство твердых тел необратимо поглощать механическую энергию, полученную телом при его деформации. Внутреннее трение проявляется, напр., в затухании свободных колебаний.2) В жидкостях и газах то же, что вязкость … Большой Энциклопедический словарь

    ВНУТРЕННЕЕ ТРЕНИЕ, то же, что вязкость … Современная энциклопедия

    В твёрдых телах, свойство твёрдых тел необратимо превращать в теплоту механич. энергию, сообщённую телу в процессе его деформирования. В. т. связана с двумя разл. группами явлений неупругостью и пластич. деформацией. Неупругость представляет… … Физическая энциклопедия - 1) свойство твердых тел необратимо превращать в теплоту механическую энергию, полученную телом при его деформации. Внутреннее трение проявляется, например, в затухании свободных колебаний. 2) В жидкостях и газах то же, что вязкость. * * *… … Энциклопедический словарь

    Internal friction Внутреннее трение. Преобразование энергии в тепло под воздействием колебательного напряжения материала. (Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО Профессионал, НПО Мир и семья; Санкт Петербург … Словарь металлургических терминов

    Вязкость (внутреннее трение) свойство растворов, характеризующее сопротивление действию внешних сил, вызывающих их течение. (Смотри: СП 82 101 98. Приготовление и применение растворов строительных.)


Самое обсуждаемое
Таинственная карта неба - три луны над землей Таинственная карта неба - три луны над землей
Выражение просьбы или позволения в английском языке Выражение просьбы или позволения в английском языке
Педагогические технологии в дополнительном образовании детей Технологии дополнительного образования детей Педагогические технологии в дополнительном образовании детей Технологии дополнительного образования детей


top