Зависимость растворимости от различных факторов. Факторы, влияющие на растворимость веществ. Растворимость твёрдых веществ в жидкостях

Зависимость растворимости от различных факторов. Факторы, влияющие на растворимость веществ. Растворимость твёрдых веществ в жидкостях

Растворимость веществ зависит от природы растворителя и вещества, которое растворяется, а также от условий растворения: температуры, давления (для газов), концентрации, наличия других растворенных веществ.

Одни вещества растворяются в определенном растворителе хорошо, другие - плохо. Но можно и количественно оценить способность того или иного вещества к растворению или, другими словами, растворимость вещества.

Растворимостью называется способность вещества растворяться в том или ином растворителе. Мерой растворимости вещества при данных условиях является его содержание в насыщенном растворе.

По растворимости в воде все вещества делятся на три группы:

― хорошо растворимые (р),

― малорастворимые (м),

― практически нерастворимые (н).

Однако следует отметить, что абсолютно нерастворимых веществ нет. Если опустить в воду стеклянную палочку или кусочек золота или серебра, то они в ничтожно малых количествах все же будут растворяться в воде.

Примером малорастворимых в воде веществ могут служить гипс, сульфат свинца (твердые вещества), диэтиловый эфир, бензол (жидкие вещества), метан, азот, кислород (газообразные вещества).

Многие вещества в воде растворяются весьма хорошо. Примером таких веществ могут служить сахар, медный купорос, гидроксид натрия (твердые вещества), спирт, ацетон (жидкие вещества), хлороводород, аммиак (газообразные вещества). Следует отметить, что растворимость твердых веществ зависит от степени их измельчения. Мелкие кристаллики, размеры которых меньше примерно 0,1 мм, более растворимы, чем крупные.

Растворимость, выраженная при помощи массы вещества, которое может раствориться в 100 г воды при данной температуре, называют также коэффициентом растворимости.

Предельная растворимость многих веществ в воде (или в других растворителях) представляет собой постоянную величину, соответствующую концентрации насыщенного раствора при данной температуре. Она является качественной характеристикой растворимости и приводится в граммах на 100 г растворителя при определённых условиях. Растворимость некоторых веществ в воде при комнатной температуре приведена в табл.1.

Растворимость жидкостей в жидкостях может быть полной или ограниченной. Более распространена ограниченная растворимость. При полной взаимной растворимости жидкости смешиваются в любых соотношениях. Например (спирт-вода). Жидкости с ограниченной взаимной растворимостью всегда образуют два слоя. Примером системы с ограниченной растворимостью является система бензол-вода. При смешивании этих жидкостей всегда существует два слоя: верхний слой состоит в основном из воды и содержит бензол в небольших количествах (примерно 11 %), нижний слой, наоборот, состоит в основном из бензола и содержит около 5 % воды. С увеличением температуры взаимная растворимость ограниченно растворимых жидкостей в большинстве случаев возрастает и часто при достижении определенной для каждой пары жидкостей температуры, называемой критической , жидкости полностью смешиваются одна с другой. Например, фенол и вода при t° 68,8° (критическая температура) и выше растворяются друг в друге в любых пропорциях; ниже критической температуры они лишь ограниченно растворимы друг в друге.



Вещества, для которых характерны ионный и полярный типы связи, лучше растворяются в полярных растворителях (вода, спирты, жидкий аммиак, уксусная кислота и др.). Напротив, вещества с неполярной или малополярным типом связи хорошо растворяются в неполярных растворителях (ацетон, сероуглерод, бензол и др.). Можно сформулировать общее правило взаимной растворимости веществ: «Подобное растворяется в подобном».

Зависимость растворимости твердых и газообразных веществ от температуры показывают кривые растворимости (рис. 1).

Рис. 1. Кривые растворимости твердых и газообразных веществ.

Ход кривых растворимости нитратов серебра, калия и свинца показывает, что с повышением температуры растворимость этих веществ существенно возрастает. Почти горизонтальный ход кривой растворимости хлорида натрия свидетельствует о незначительном изменении его растворимости с повышением температуры.

Для большинства солей характерно увеличение растворимости при нагревании.

По кривым растворимости можно определить:

― коэффициент растворимости веществ при различных температурах;

― массу растворимого вещества, которая выпадает в осадок при охлаждении раствора от t 1 o C до t 2 o C.

Если растворение вещества является экзотермическим процессом, то с повышением температуры его растворимость уменьшается. Практически все газы растворяются с выделением тепла, поэтому с повышением температуры растворимость газов уменьшается (рис.3). Так, кипячением воды можно удалить из нее газы, которые были растворены.

В табл. 2 указаны растворимости в воде некоторых газов при различных температурах.

Растворимость газа зависит от природы жидкости и газа. Например, кислород растворяется в воде в количестве примерно вдвое большем, чем азот. Это обстоятельство имеет большое значение для жизни живых организмов в воде.

Растворимость газов в жидкостях с повышением температуры уменьшается, а с понижением - увеличивается.

Растворимость газов в воде уменьшается также при добавлении к раствору солей, ионы которых более прочно связываются с молекулами воды, чем молекулы газа, понижая тем самым его растворимость.

Растворение как физико-химический процесс. Изменение энтропии, энтальпии и энергии Гиббса при растворении веществ. Сольватация, сольваты. Тепловой эффект растворения. Строение молекул воды и свойства воды как растворителя. Гидраты и кристаллогидраты.

Химическое равновесие. Обратимые и необратимые химические реакции. Константа химического равновесия. Факторы, определяющие величину константы. Катализ и химическое равновесие. Сдвиг химического равновесия, принцип Ле Шателье.

Химическое равновесие – это состояние обратимой реакции, при котором скорость прямой реакции равна скорости обратной реакции. Оно является динамическим равновесием.

Обратимые химические реакции – реакции, которые одновременно протекают в прямом и в обратном направлениях.

Необратимые химические реакции – реакции, которые протекают толкьо в одном направлении, т.е. продукты этих реакций не взаимодействуют друг с другом с образованием исходных веществ.

Константа химического равновесия – отношение констант сокростей прямой и обратной реакций, постоянная величина. Величина константы равновесия зависит от природы реагирующих веществ и температуры. Катализатор не влияет на величину константы равновесия, т. к. он одинаково снижает энергию активации прямой и обратной реакций и поэтому одинаково изменяет скорости прямой и обратной реакций. Концентрации, входящие в выражение константы равновесия, называются равновесными концентрациями.

В выражение константы равновесия гетерогенной реакции входят только концентрации веществ, находящихся в жидкой или газообразной фазе.

Факторы, определяющие величину константы: Величина константы равновесия зависит от природы реагирующих веществ и температуры. Катализатор не влияет на величину константы равновесия, т. к. он одинаково снижает энергию активации прямой и обратной реакций и поэтому одинаково изменяет скорости прямой и обратной реакций.

Катализ и химическое равновесие: катализатор одновременно увеличивает сокрость прямой и обратной реакции, а поэтому толкьо уменьшает время достижения равновесия.

Сдвиг химического равновесия, принцип Ле Шателье.

Если при изменении условий протекания реакции (температуры, давления, концентрации какого-либо из участвующих в реакции веществ) скорости прямого и обратного процесса изменяются неодинаково, то химическое равновесие нарушается. Процесс перехода от одного равновесного состояния к новому равновесию называется смещением химического равновесия.

Направление этого смещения подчиняется принципу Ле Шателье: Если на систему, находящуюся в состоянии химического равновесия, оказать какое-либо воздействие, то равновесие сместится в таком направлении, что оказанное воздействие будет ослаблено. Т. е. повышение температуры приведет к смещению равновесия в направлении реакции, сопровождающейся поглощением теплоты; повышение давления - в направлении уменьшения суммарного числа молей газообразных веществ; повышение концентрации одного из исходных веществ - в направлении прямой реакции.


Растворы. Классификация дисперсных систем: истинные растворы, коллоидные
растворы, грубодисперсные системы.

Растворы – гомогенные системы переменного состава, которые содержат два или несколько компонентов.

Растворы:

ü Жидкие – натрий хлорид в воде, йод в спирте.

ü Газообразные – воздух.

ü Твердые – сплавы металлов.

Наиболее распространены жидкие растворы. Они состоят из растворителя (жидкости) и растворенных веществ (газообразных, жидких, твердых). Жидкие растворы могут быть водные и неводные. Водные растворы – растворы, в которых растворителем является вода. Неводные растворы – растворы, в которых растворителем являются другие жидкости.

Все растворы относятся к дисперсным системам. Раствор может оставаться гомогенной системой, если частицы растворенного вещества не существуют в виде достаточно крупных ассоциатов, отделенных от растворителя поверхностью раздела, т.е. не образует отдельной фазы. Считается, что раствор остается истинным , если размер частиц растворенного вещества не превышает 1 нм. При увеличении размеров частиц в пределах от 1 до 100 нм раствор приобретает специфические свойства, и если поверхность такой частицы, включающей большое число молекул вещества, не имеет электрического заряда, то раствор разрушается и вещество выпадает в осадок. При наличии на поверхности частицы плотного электрического заряда за счет адсорбции ею из раствора ионов одного знака или сильно полярных молекул разрушения не происходит. Такие частицы называются мицеллами, а сами растворы – коллоидными .

Гетерогенные системы, состоящие из сплошной непрерывной фазы – дисперсионной среды и находящихся в этой среде раздробленных частиц того или иного размера и формы – дисперсной фазы называются дисперсной системой.

Обязательным условием получения дисперсных систем является взаимная нерастворимость диспергируемого вещества вещества и дисперсионной среды

Различают:

ü Грубодисперсные системы (размер частиц дисперсной фазы > 10 -6 м)

ü Предельно-высоко-дисперсные или коллоидные (размер частиц дисперсной фазы составляет 10 -9 – 10 -7 м)

Растворы (истинные) - это гомогенные системы переменного состава, где, в отличие от соединений переменного состава, содержание хотя бы одного компонента можно довести до 100%, не нарушая гомогенности. Этот компонент называется растворителем. Смесь спирта с водой можно разбавить любым количеством воды, все равно получится гомогенный раствор, и так – до практически чистой воды. Аналогично можно добавлять к раствору спирт, пока концентрация воды не дойдет практически до нуля. Здесь любое из двух веществ можно считать растворителем. Поваренной соли в воде нельзя растворить более 28%. Если добавлять больше соли, она не растворяется, получается гетерогенная система. Растворитель здесь не соль, а вода. Не потому, что ее больше, а потому что она составляет с раствором единую фазу. Растворителя может быть и меньше, чем растворенного вещества. Например, растворимость нитрата серебра в воде при 20°С – 70%, а при 100° - 90%. Воды в насыщенном растворе всего 30-10%, но растворитель – именно вода, а не нитрат серебра, потому что он твердый, а раствор жидкий. Это две разные фазы.

Растворимость


Если вещества растворимы ограниченно, значит, есть какая-то предельная концентрация, свыше которой в данных условиях вещество не растворяется. Раствор, находящийся в равновесии с избытком растворяемого вещества, называется насыщенным. Растворимость - это концентрация насыщенного раствора. Для данных условий это константа. Растворимость часто выражают количеством граммов растворяемого вещества в 100 г растворителя в данных условиях (температура, давление). Раствор, концентрация которого меньше растворимости - ненасыщенный. Он не находится в равновесии с растворяемым веществом: если добавлять это вещество, оно будет растворяться, пока раствор не станет насыщенным или пока оно не закончится. Раствор, концентрация которого больше растворимости - пересыщенный (не переНАсыщенный!). Он тоже не находится в равновесии с растворяемым веществом: если добавить хоть немного этого вещества, оно послужит затравкой, на которой начнется быстрое выделение избытка этого вещества из раствора, пока его концентрация не понизится до равновесной (до растворимости). Такой процесс могут вызвать и частицы других веществ (пыль) и встряхивание. Это необратимый процесс - переход системы из неравновесного состояния в равновесное.

Сольваты – продукты переменного состава, которые образуются при химическом взаимодействии частиц растворенного вещества с молекулами растворителя. Если растворителем является вода, то образующиеся сольваты называются гидратами. Процесс образования сольватов называется сольватацией . Процесс образования гидратов – гидратация . Кристаллические вещества, содержащие молекулу воды, называются кристаллогидратами . Вода, входящая в их состав, называется кристаллизационной водой .

Кристаллогидраты:

ü Медный купорос CuSO 4 *5H 2 O

ü Глауберова соль Na 2 SO 4 *10H 2 O

ü Кристаллическая сода Na 2 CO 3 *10H 2 O

Доказательством физико-химического характера процесса растворения являются тепловые эффекты при растворении, т.е. выделение или поглощение теплоты.

Тепловой эффект растворения равен сумме тепловых эффектов физического и химического процессов. Физический процесс протекает с поглощением теплоты, химический – с выделением.

Если в результате гидратации (сольватации) выделяется больше теплоты, чем поглощается при разрушении структуры вещества, то растворение – экзотермический процесс. Если для разрушения структуры вещества необходимо больше теплоты, чем ее образуется при гидратации, то растворение – эндотермический процесс.

С позиции химической термодинамики самопроизвольное протекание процесса растворения возможно, если изменение энергии Гиббса меньше нуля: ΔG = ΔH - TΔS <0

Главное – рост энтропии при перемешивании частиц. Обычно ΔSраств > 0 (хотя иногда при растворении в концентрированных растворах ΔSраств < 0 из-за упорядочения молекул растворителя). Кроме того, как мы видели, бывает и тепловой эффект растворения, нaпример: ΔНраств > 0 при растворении KSCN в воде (эндотермический процесс) или ΔНраств < 0 при растворении H 2 SO 4 в воде (экзотермический процесс). Это зависит от межмолекулярного взаимодействия.

Внутри молекул – прочные ковалентные связи. Но и между молекулами есть притяжение, только более слабое. Если бы его не было, то все молекулярные вещества при всех температурах были бы газами. Различают следующие виды межмолекулярных сил.

Водородная связь . Если атом Н связан с сильно электроотрицательным атомом (F, O или N), он приобретает значительный положительный заряд и может притягиваться к другому электроотрицательному атому той же или, чаще, другой молекулы. Например, в структуре льда каждая молекула воды образует 4 водородных связи: две за счет двух атомов Н, которые притягиваются к неподеленным электронным парам соседних молекул, и две за счет неподеленных пар, которые притягиваются к атомам Н соседних молекул. Ковалентные связи изображают короткими сплошными линиями, а водородные – более длинными пунктирными. При таянии льда разрывается только часть этих связей, а полностью они исчезают в парообразном состоянии.

Силы Ван-дер-Ваальса. Различают три типа этих сил:

ü ориентационное (диполь-дипольное) взаимодействие: полярные молекулы, то есть диполи (например, HCl) ориентируются друг к другу противоположно заряженными концами и притягиваются (но не так сильно и не так жестко ориентированы, как при водородной связи);

ü индукционное взаимодействие – притяжение дипольной молекулы к наведенному ею диполю в молекуле, которая сама по себе неполярна (демонстрация: притяжение бумажек к наэлектризованной расческе); такое может быть только в растворах, но не в чистых веществах, где все молекулы одинаковые;

ü дисперсионное взаимодействие - притяжение мгновенных диполей, которые образуются в любом атоме, ионе, молекуле из-за того, что при движении электронов в каждый момент центр тяжести электронных облаков не точно совпадает с ядром; при сближении атомов вращение мгновенных диполей становится согласованным.

Дисперсионные силы - общие для всех веществ (молекулярных и немолекулярных, с полярной и неполярной связью), но в чистом виде они наблюдаются между неполярными молекулами.

Ковалентные связи намного прочнее межмолекулярных. Ковалентные связи обычно не разрываются при растворении или плавлении молекулярных веществ, а немолекулярные вещества с такими связями очень трудно растворить, расплавить, испарить.

Ион-дипольное взаимодействие. Притяжение полярных молекул к ионам гораздо сильнее, чем к другим полярным молекулам, особенно если ион многозарядный. При этом, кроме чисто электростатического притяжения, могут также образовываться ковалентные донорно-акцепторные связи, но их механизм мы пока не рассматриваем.

В общем виде (М - ион, L - молекула растворителя) : M±p + nL = MLn±p ; ΔH < 0.

Молекула воды - одна из самых полярных, поэтому c ней ΔH такого процесса особенно велика по абсолютной величине - от 300 до 3000 кДж/моль. Это больше энергии одной ковалентной связи, так как каждый ион присоединяет к себе много молекул воды (n не меньше 4, а обычно - больше).

Взаимодействие частиц растворенного вещества с растворителем называется сольватация, а если растворитель - вода, то гидратация. Продукт взаимодействия - сольват (гидрат). Если сольватация особенно сильная, то сольваты сохраняются не только в растворе, но и в кристаллическом состоянии, например, FeSO 4 *7H 2 O, MgCl 2 *6C 2 H 5 OH. Тогда, растворив безводную соль в жидкости, мы обратно (при упаривании) получаем не ее, а сольват.

Таким образом, тепловой эффект растворения состоит из двух слагаемых: затраты энергии на преодоление притяжения между частицами (молекулами или ионами) в исходных веществах и выделения энергии при взаимодействии частиц разных веществ. Поскольку слагаемые имеют разные знаки, то сумма - ΔH растворения - может быть и положительной, и отрицательной. В случае твердых веществ первое слагаемое называют энергией кристаллической решетки, хотя это не очень удачный термин (не все твердые вещества - кристаллические, и слово "решетка" не несет химического содержания).

Пример. Растворение твердого хлорида натрия в воде можно мысленно разбить на следующие стадии.

1) разрушение кристалла на свободные (газообразные) ионы: NaCl(тв.) = Na+(г) + Cl-(г); ΔH 1 >0;

2) гидратация этих ионов: Na + (г) + рН 2 О = Na(Н 2 О)р + (р-р)

Cl - (г) + qН 2 О = Cl(Н 2 О)q - (р-р) ΔH 2 <0

Итоговое уравнение: NaCl(тв.) + (р+q)Н 2 О = Na(Н 2 О)р+ (р-р) + Cl(Н 2 О)q- (р-р) ΔHраств (NaCl) = ΔH 1 + ΔH 2

Отсюда видно, что тепловой эффект растворения близок к нулю, это малая разность двух больших величин, и его трудно точно вычислить. Экспериментально измерено: ΔHраств (NaCl) » 2-4 кДж/моль (в зависимости от концентрации).

Реально, конечно же, перечисленные стадии происходят не последовательно, а параллельно. Энтальпия сублимации (переход в газообразное состояние) слишком велика, чтобы этот процесс шел самопроизвольно. Полярные молекулы воды ориентируются на поверхности ионного кристалла и отрывают от нее ионы. Аналогично они отрывают полярные молекулы, например, из кристалла сахара.

Если мы смешиваем две жидкости с водородными связями, например, воду и серную кислоту, воду и спирт, то кристаллических решеток здесь нет, но и здесь преодолевается притяжение между одинаковыми молекулами (ΔH 1 > 0) и возникает притяжение между разными (ΔH 2 < 0). Что получится в сумме - трудно предугадать заранее, но из опыта мы знаем, что при смешивании ΔH < 0.


Если вещества растворимы ограниченно, значит, есть какая-то предельная концентрация, свыше которой в данных условиях вещество не растворяется. Раствор, находящийся в равновесии с избытком растворяемого вещества, называется насыщенным. Растворимость - это концентрация насыщенного раствора. Для данных условий это константа. Растворимость часто выражают количеством граммов растворяемого вещества в 100 г растворителя в данных условиях (температура, давление). Раствор, концентрация которого меньше растворимости - ненасыщенный. Он не находится в равновесии с растворяемым веществом: если добавлять это вещество, оно будет растворяться, пока раствор не станет насыщенным или пока оно не закончится. Раствор, концентрация которого больше растворимости - пересыщенный (не переНАсыщенный!). Он тоже не находится в равновесии с растворяемым веществом: если добавить хоть немного этого вещества, оно послужит затравкой, на которой начнется быстрое выделение избытка этого вещества из раствора, пока его концентрация не понизится до равновесной (до растворимости). Такой процесс могут вызвать и частицы других веществ (пыль) и встряхивание. Это необратимый процесс - переход системы из неравновесного состояния в равновесное.

Факторы, влияющие на растворимость веществ в жидком состоянии:

1) ПРИРОДА СМЕШИВАЕМЫХ ВЕЩЕСТВ. Мы уже видели, что в веществах с полярными молекулами (особенно с водородными связями) и в ионных веществах существует сильное взаимное притяжение частиц. Поэтому такие вещества не будут легко дробиться (смешиваться с другими), если в растворе не будет сильного притяжения между частицами разных веществ, т.е. большая величина ΔH 1 должна быть полностью или почти полностью скомпенсирована отрицательной величиной ΔH 2 . Отсюда следует, что вещества с ионной связью или с полярными молекулами должны гораздо лучше растворяться в полярных или ионных растворителях, чем в растворителях с неполярными молекулами. Соответственно, вещества с неполярными молекулами лучше растворяются в неполярных растворителях и хуже - в полярных, а металлы - в металлах. Это правило сформулировано еще алхимиками: подобное растворяется в подобном. Не следует путать полярные связи и полярные молекулы. Связь C-Cl полярна, но в молекуле CCl 4 эти связи расположены так симметрично, что их полярность взаимно уничтожается, и молекула неполярна. Молекула воды полярна только потому, что она угловая. Если бы она была линейной, как СО 2 , она была бы неполярна, Ткип. была бы градусов на 200 ниже, и вся жизнь на Земле выглядела бы иначе (а скорее всего, вообще бы не возникла).

Таким образом, если на одежде жирное пятно, его лучше смывать не водой, а бензином, CCl 4 или другим неполярным растворителем, а если пятно от соли или сахара - то лучше водой, а не бензином. Точно так же в металлургии: металлы в жидком состоянии обычно хорошо растворяют друг друга и плохо растворяют вещества с ионной связью (собственные оксиды, фосфаты, силикаты, фториды), которые образуют отдельную жидкую фазу - шлак.

2) ТЕМПЕРАТУРА . Здесь, как и в любых других равновесиях, действует принцип Ле Шателье. При нагревании растворимость возрастает, если ΔHраств > 0 (и тем круче, чем больше ΔH), и убывает, если ΔHраств < 0. Для твердых веществ более характерно первое, а для газов - второе, хотя бывает и наоборот. Это особенно наглядно в случае солей, образующих кристаллогидраты. При растворении кристаллогидрата в воде не может быть сильной гидратации, поскольку вещество уже гидратировано. Поэтому преобладает первое слагаемое, и ΔHраств > 0. Если мы берем ту же соль в безводном виде, но знаем, что она способна давать кристаллогидрат, то можно ожидать, что у нее преобладает второе слагаемое, и ΔHраств < 0. Поэтому графики зависимости растворимости от температуры у кристаллогидрата и безводной соли часто имеют противоположный наклон.

Таким образом, чаще при растворении твердых или жидких веществ в жидкостях растворимость возрастает с повышением температуры, а для газов – убывает.

3) ДАВЛЕНИЕ . Как уже обсуждалось, давление влияет в основном на процессы с участием газов. Запишем выражение константы равновесия при растворении газа L в жидкости:

L(газ) = L(раств); К = /pL, где – концентрация газа в растворе (обычно массовая доля), pL – парциальное давление растворенного газа над раствором.

Отсюда видно, что концентрация насыщенного раствора пропорциональна парциальному давлению газа: = K . pL. Это закон Генри.

Масса газа, растворяющегося при постоянной температуре в данном объеме жидкости, прямо пропорциональна парциальному давлению газа.

Он справедлив только для разбавленных растворов, при не очень высоких давлениях, и при условии, что при растворении нет ни диссоциации, ни ассоциации (иначе изменится уравнение реакции). Например, для HСl в воде он неприменим, а для O 2 , N 2 , NO - применим. По уравнению состояния газа его объем обратно пропорционален давлению. Поэтому объем газа, способного раствориться в данном количестве растворителя, по закону Генри не зависит от давления. Можно сказать: в 1 л воды при 20°С растворяется 31 мл кислорода, не указывая давление. Если повысить давление, то количество молекул кислорода в растворе возрастет, но объем растворенного газа будет тот же.

Зависимость растворимости газов от давления видел всякий, кто открывал бутылку лимонада, пива или шампанского. Внутри бутылки повышенное давление, и углекислый газ находится в растворе. При открывании давление падает, газ смешивается с воздухом, и парциальное давление CO 2 падает еще сильнее. Раствор становится пересыщенным, и из него выделяются пузырьки газа.

4) ПРИСУТСТВИЕ ТРЕТЬЕГО ВЕЩЕСТВА. Его влияние может быть разнообразно. Важнейшие случаи:

а) это вещество сильно сольватируется, связывает много молекул растворителя и этим уменьшает растворимость; пример: спирт по отношению к растворам солей;

б) это вещество связывает молекулы или ионы растворяемого вещества и этим повышает растворимость; пример: аммиак, связывающий ионы меди и повышающий растворимость Cu(OH) 2 ;

в) это вещество дает ионы, одноименные с ионами растворяемого вещества, и тем смещает равновесие растворения влево; пример: в насыщенном растворе CaSO 4 существует равновесие CaSO 4 (тв) = Ca 2+ (р-р) + SO 4 2- (р-р). Добавляя крепкий раствор хлорида кальция, мы увеличиваем концентрацию ионов кальция, и часть сульфата выпадает.

При добавлении HСl(г) к насыщенному раствору NaСl действуют причины (а) и (в).

Способность вещества растворяться в воде называют растворимостью. По растворимости вещества условно делят на хорошо растворимые, малорастворимые и практически нерастворимые (схема 3).

Схема 3. Классификация веществ по растворимости в воде

Если в растворе в результате химической реакции образуется вещество малорастворимое или практически нерастворимое в воде, то оно выпадает в виде осадка — раствор теряет прозрачность, становится мутным.

Растворимость некоторых неорганических веществ в воде приведена в таблице растворимости кислот, солей и гидроксидов (см. форзац 2).

Пределы растворимости веществ

Подавляющее большинство веществ ограничено растворимы в разных растворителях. Количественно их растворимость выражают

числом, которое показывает наибольшую массу вещества, способную раствориться в 100 г растворителя при определенных условиях. Эту величину называют коэффициентом растворимости, или просто растворимостью. Например, в 100 г воды при 20 °С можно растворить не более 32 г KNO 3 , 36 г NaCl, 0,25 г CaSO 4 и только 0,007 г CaCO 3 . Эти данные можно найти в справочниках.

Обратите внимание: кальций карбонат, который считается практически нерастворимым, на самом деле в незначительном количестве переходит в раствор. Абсолютно нерастворимых веществ не существует.

Некоторые жидкости, например этиловый спирт, глицерин, ацетон, сульфатная, нитратная и уксусная кислоты, неограниченно растворимы в воде — их можно смешивать с водой в любых соотношениях (рис. 6.1). Бензин, керосин, масло, хлороформ и многие другие жидкости растворимы в воде незначительно, поэтому их считают практически нерастворимыми. Если такую жидкость, например растительное масло, вылить в воду и взболтать (рис. 6.2, а), то через некоторое время образуются два отдельных слоя — верхний (масло) и нижний (вода) (рис. 6.2, б). О таких жидкостях говорят, что они не смешиваются.

Газы также сильно отличаются по растворимости. Наиболее растворимы в воде гидроген хлорид HCl и аммиак NH 3 . При температуре 0 °С и атмосферном давлении в 1 л воды можно растворить 500 л гидроген хлорида и 1200 л аммиака! Растворимость других газов в воде значительно ниже. Так, при тех же условиях в 1 л воды растворяется лишь 1,7 л углекислого газа, 50 мл кислорода, 23 мл азота и 21,5 мл водорода. Наименее растворимым газом является гелий — 9,7 мл в 1 л воды.


Зависимость растворимости веществ от температуры

Растворимость веществ зависит от температуры. У большинства твердых веществ с повышением температуры она заметно увеличивается. Поваренная соль почти одинаково растворяется в холодной и горячей воде, а известь и гипс лучше растворимы в холодной воде.

При повышении температуры растворимость:

Твердых и жидких веществ увеличивается;

Газообразных веществ уменьшается.

Экспериментально установлено, что при температуре 0 °С в 100 г воды может раствориться не более 13 г калийной селитры KNO 3 , при 40 °С — 64 г, а при 100 °С — 244 г. Зависимость растворимости от температуры отображают на кривых растворимости (рис. 6.3).

Растворимость газообразных веществ, наоборот, с повышением температуры уменьшается (рис. 6.4). Если холодную водопроводную воду нагревать, не доводя до кипения, то на дне и стенках сосуда образуются пузырьки воздуха, который был растворен в воде и начал из нее выделяться.

Рис. 6.3. Зависимость растворимости некоторых твердых веществ от температуры: а — у большинства твердых веществ растворимость увеличивается; б — у некоторых — зависимость сложная

Рис. 6.4. Зависимость растворимости некоторых газов от температуры

Зависимость растворимости веществ от давления В отличие от жидкостей и твердых веществ, растворимость газов зависит от давления: газы значительно лучше растворяются при повышении давления. Скорее всего, вам приходилось открывать бутылку с газированной водой. В процессе приготовления газированных

напитков воду насыщают углекислым газом при повышенном давлении, а бутылку герметично закрывают. При открытии бутылки давление в ней понижается до атмосферного, растворимость углекислого газа резко уменьшается и избыточный углекислый газ начинает бурно выделяться.

При повышении давления растворимость:

Твердых и жидких веществ практически не меняется;

Газообразных веществ увеличивается.

Еще алхимики сформулировали один из главных принципов, определяющих растворимость веществ: подобное растворяется в подобном. Основываясь на этом принципе, можно объяснить, почему некоторые вещества растворяются в одном растворителе и не растворяются в другом. Веществ, которые растворялись бы абсолютно во всех растворителях, не существует. Так, полярные вещества хорошо растворяются в полярных растворителях (вода, этиловый спирт и др.), хуже растворяются в малополярных (ацетон и др.) и почти не растворяются в неполярных (бензол, петролейный эфир и др.). Например, сахар хорошо растворяется в воде и вообще не растворяется в бензоле. Наоборот, неполярные вещества хорошо растворяются в неполярных растворителях и плохо — в полярных. Например, сера нерастворима (и даже не смачивается) в воде, но хорошо растворяется в бензоле.

Во время азиатского похода весной 326 г. до н. э. войско Александра Македонского дошло до берегов реки Инд. Но, попав на территорию Индии, солдаты начали болеть кишечными инфекциями. Однако было замечено, что военачальники болели реже, чем солдаты, хотя в походах все жили в одинаковых условиях. Только через 2000 лет смогли объяснить этот факт: рядовые воины пили из оловянных чаш, а у начальников были серебряные. А серебро, хотя и в мизерном количестве, растворяется в воде, придавая ей бактерицидные свойства (в такой воде погибают бактерии). С XIX века до открытия антибиотиков такую воду использовали для промывания ран.


Ключевая идея

Некоторые вещества неограниченно растворяются в воде, но у большинства веществ растворимость ограничена. По этой характеристике выделяют растворимые, малорастворимые и практически нерастворимые вещества.

Контрольные вопросы

60. Приведите примеры растворимых и нерастворимых в воде кислот.

61. Назовите нерастворимые, малорастворимые и растворимые соли.

62. Какие вы знаете жидкости и газы, хорошо растворимые в воде?

63. Приведите примеры веществ, растворимость которых при нагревании: а) увеличивается; б) уменьшается; в) почти не меняется.

Задания для усвоения материала

64. Почему аквариумы нельзя наполнять кипяченой водой?

65. В воду случайно попал бензин. Как его можно отделить от воды? Будет ли вода иметь запах бензина, если разделение проводить путем:

а) отстаивания; б) дистилляции?

66. Какие из газов — кислород, гидроген хлорид, азот, аммиак, гелий — можно собирать: а) над водой; б) только вытеснением воздуха? Почему?

67. По кривой растворимости (рис. 6.3) определите, какую массу соли можно растворить в 1 кг воды: а) аргентум(1) нитрата при 0 °С; б) натрий нитрата при 20 °С; в) купрум(И) сульфата при 30 °С; г) плюмбум(И) хлорида при 100 °С; д) калий нитрата при 10 °С и 50 °С.

68. По рисунку 6.3 определите: а) соль с наименьшей растворимостью;

б) соль, растворимость которой наибольшая при 0 °С и 20 °С; в) соль, растворимость которой наиболее зависит от температуры; г) соль, растворимость которой наименее зависит от температуры.

69. По рисунку 6.3 сравните растворимость купрум(П) сульфата и натрий хлорида при температурах 20 °С и 80 °С.

70. В воде при 80 °С растворили максимальное количество натрий нитрата. Раствор охладили до комнатной температуры. Что можно наблюдать?

71. При изготовлении сильногазированной воды в одной бутылке объемом 1 л растворяют около 1600 мл углекислого газа. В такой открытой бутылке в растворенном состоянии остается около 880 мл углекислого газа. Какой объем углекислого газа выделится при открывании бутылки сильногазированной воды объемом 1 л? Больше или меньше газа выделится, если бутылку предварительно охладить? нагреть?

72. В лаборатории перед занятием по химическим свойствам углекислого газа приготовили известковую воду. Для этого в воде массой 150 г растворили максимально возможное количество кальций гидроксида. Вычислите, какую максимальную массу осадка можно получить при пропускании углекислого газа через приготовленный раствор. Для расчетов воспользуйтесь информацией из рисунка 6.3, учитывая, что температура в лаборатории была 20 °С.

73. При комнатной температуре в воде объемом 1 л максимально растворяется 6,3 . 10 -3 моль барий флуорида. Вычислите массу такого количества вещества барий флуорида.

74. По материалам параграфа определите, какими веществами (растворимыми, малорастворимыми или практически нерастворимыми) являются: а) аммиак; б) углекислый газ; в) кислород. Ответ поясните.

75. По рисунку 6.3 определите, на сколько больше (по массе) калий нитрата можно максимально растворить в 100 г воды при температуре 60 °С, чем при 30 °С.

76. Предложите план эксперимента для определения растворимости вещества в воде. Какие измерения вы должны провести для достижения цели? Какие факторы будут влиять на точность эксперимента?

Это материал учебника

Природа газа. При обычных условиях один объём, например, воды может растворить 0,02 объёма водорода, 0,05 объёмов кислорода, 400 объёмов хлористого водорода или 700 объёмов аммиака. В жидкостях лучше растворяется тот газ, который имеет более высокую температуру кипения.

Природа растворителя. Подавляющее большинство газов, молекулы которых неполярны (Н 2 , О 2 , N 2 и др.), растворяется в мало полярных растворителях (например, в органических) лучше, чем в воде.

Температура. При нагревании растворимость газов в жидкостях, как правило, уменьшается. Кипячением жидкостей обычно удаётся освободить их от растворённых газов (т. е. осуществить дегазацию). С ростом температуры уменьшается растворимость в жидкости тех газов, для которых процесс растворения сопровождается выделением теплоты. Растворение газов в органических жидкостях нередко сопровождается поглощением теплоты; в подобных случаях с ростом температуры растворимость газа увеличивается.

Давление. Зависимость растворимости газов от давления выражает закон растворимости газов (Генри, 1803): растворимость газа в жидкости прямо пропорциональна его парциальному давлению:

где р В – парциальное давление газа Внад поверхностью его раствора, Па;

К Г – константа пропорциональности (константа Генри) , Па;

х В –молярная доля растворённого газа.

Понижение парциального давления газа ведёт к уменьшению его растворимости. Пример – обычная газированная вода, представляющая собой приготовленный под повышенным давлением углекислого газа его насыщенный водный раствор: при соприкосновении её с воздухом (в котором парциальное давление СО 2 составляет всего 0,2 мм рт. ст.) растворённый углекислый газ начинает бурно выделяться.

Закон растворимости газов верен лишь для достаточно разбавленных растворов, при сравнительно невысоких давлениях и отсутствии химического взаимодействия молекул растворяемого газа с растворителем (или друг с другом).

Растворимость жидкостей в жидкостях

Неограниченная взаимная растворимость, или смешиваемость

(толуол – бензол, этиловый спирт – вода).

Ограниченная взаимная растворимость (вода – диэтиловый эфир,

вода – бензин);

Практически полная нерастворимость (ртуть – вода);

Если жидкости растворяются друг в друге ограниченно, то происходит образование двух жидких фаз, причём фаза с большей плотностью (насыщенный раствор бензина в воде) будет находиться в нижнем слое, а фаза с меньшей плотностью (насыщенный раствор воды в бензине) – в верхнем слое. При нагреваниирастворимость жидкостей в жидкостях чаще всего возрастает и может наступить момент (при критической температуре растворения ), когда граница раздела фаз исчезнет, и образуется одна жидкая фаза (т. е. обе жидкости смеши-ваются в любых пропорциях).

Взаимное растворение жидкостей обычно не сопровождается значительным изменением объёма, и поэтому мало зависит от давления, заметно возрастая лишь при очень высоких давлениях (порядка тысяч атмосфер или 10 8 Па).

Растворимость твёрдых веществ в жидкостях

Существует условное деление веществ по их растворимости в конкретном растворителе при определённой температуре на практически нерастворимые (меньше 0,1 г в 100 г растворителя, или меньше 0,001 моль/л), малорастворимые (от 0,1 до 1 г в 100 г растворителя, или 0,001-0,1 моль/л) и хорошо растворимые вещества (более 1 г в 100 г растворителя, или более 0,1 моль/л) (см. приложение 2). При повышении температуры растворимость твёрдых веществ в жидкостях, как правило, увеличивается.

При растворении твёрдых веществ в воде объём системы изменяется незначительно, поэтому их растворимость практически не зависит от давления.

Идеальный раствор – раствор, образующийся как простое «физическое» смешение компонентов при отсутствии их химических взаимодействий. Образование такого раствора не сопровождается тепловым эффектом и изменением объёма (∆V = 0, ∆Н = 0). Хотя растворы не обладают свойствами идеальных, поведение многих из них достаточно удовлетворительно описывается при помощи этой модели.

6.6. ЗАКОНОМЕРНОСТИ ПОВЕДЕНИЯ РАСТВОРОВ:

ЗАКОН РАУЛЯ

Давление пара над раствором. При данной температуре давление насыщенного пара над каждой жидкостью – величина постоянная. При растворении в жидкости какого-либо нелетучего вещества давление насыщенного пара этой жидкости понижается. Таким образом, давление насыщенного пара растворителя над раствором нелетучего вещества всегда ниже, чем над чистым (индивидуальным) растворителем при той же температуре. Разность между этими величинами называют понижением давления пара растворителя над раствором (или понижением давления пара раствора). Отношение величины этого понижения к давлению насыщенного пара растворителя над чистым растворителем называется относительным понижением давления пара растворителя над раствором:

где р 0 – давление насыщенного пара растворителя над чистым растворителем;

р – давление насыщенного пара растворителя над раствором.

Французский физик Рауль в 1887 установил закон, связывающий понижение давления пара растворителя над разбавленными растворами неэлектролитов с концентрацией: относительное понижение давления насыщенного пара растворителя над раствором равно молярной доле растворённого вещества. Математическое выражение закона Рауля:

где х В – молярная доля растворённого вещества В.

Явление понижения давления насыщенного пара растворителя над раствором вытекает из принципа Ле Шателье: если на систему, находящуюся в равновесии, воздействовать извне путём изменения какого-либо параметра, то равновесие будет сдвигаться в направлении, способствующем восстановлению равновесия системы.

Представим себе равновесие между жидкостью, например водой, и её паром. Это равновесие, которому отвечает определённое давление насыщенного пара, можно выразить уравнением

(Н 2 О) жидк = (Н 2 О) пар.

Если теперь растворить в воде некоторое количество какого-либо вещества, то концентрация молекул воды в жидкости понизится и пойдёт процесс, увеличивающий её, – конденсация пара. Новое равновесие установится при более низком давлении насыщенного пара.

Замерзание и кипение растворов. Чистые (индивидуальные) вещества характеризуются строго определёнными температурами переходов из одного агрегатного состояния в другое (температура кипения t кип, температура плавления t плав или кристаллизации). При нормальном атмосферном давлении (101,325 кПа) t кип и t плав воды равны соответственно 0 и 100 °С.

Присутствие растворённого вещества повышает температуру кипения и понижает температуру замерзания растворителя, и тем сильнее, чем концентрированнее раствор. В большинстве случаёв из раствора кристаллизуется (при замерзании) или выкипает (при кипении) только растворитель, вследствие чего концентрация раствора в процессе замерзания или кипения возрастает. Это, в свою очередь, приводит к ещё большему повышению температуры кипения и снижению температуры замерзания. Таким образом, раствор кристаллизуется и кипит не при определённой температуре, а при некотором температурном интервале. Температуру начала кристаллизации и начала кипения данного раствора называют его температурой замерзания и температурой кипения.

Разность между температурами кипения раствора и чистого растворителя называют повышением температуры кипения раствора (∆t кип). Разность между температурами замерзания чистого растворителя и раствора называют понижением температуры замерзания раствора (∆t зам). Обозначая – температуры замерзания и кипения чистого растворителя, а – температуры кристаллизации и кипения раствора, имеем:

Всякая жидкость начинает кипеть при той температуре, при которой давление её насыщенного пара достигает величины внешнего давления. Например, вода под давлением 101,325 кПа кипит при 100 °С потому, что при этой температуре давление водяного пара как раз равно 101,325 кПа. Если же растворить в воде какое-нибудь нелетучее вещество, то давление её пара понизится. Чтобы довести давление пара полученного раствора до 101,325 кПа, нужно нагреть раствор выше 100 °С. Поэтому температура кипения раствора всегда выше температуры кипения чистого растворителя.

Кристаллизация же связана с выделением количества теплоты, равного теплоте плавления, и для чистых жидкостей протекает при постоянной температуре, причём температура кристаллизации равна температуре плавления Т пл.Последняя определяется из уравнения Клапейрона-Клаузиуса:

где р – давление;

v ж и v тв – удельный объём жидкой и твёрдой фазы соответственно;

L пл –удельная теплота плавления (фазового перехода).

Повышение температуры кипения и понижение температуры замерзания растворов соответствуют принципу Ле Шателье. Пусть имеется равновесие между жидкостью и твёрдой фазой, например, равновесие жидкая вода – лёд при 0 °С. Его можно выразить уравнением

(Н 2 О) твёрд (Н 2 О) жидк.

Если растворить в воде некоторое количество какого-либо вещества, то концентрация молекул воды в жидкости понизится и пойдет процесс, увеличивающий её, – плавление льда . Для установления нового равновесия необходимо понизить температуру.

Ф. Рауль в 1882-1888 гг. установил, что для разбавленных растворов неэлектролитов повышение температуры кипения и понижение температуры замерзания пропорциональны концентрации раствора:

где с т – моляльная концентрация (моляльность);

Е и К – эбулиоскопическая и криоскопическая постоянные,

Зависящие только от природы растворителя, но не от природы

растворённого вещества.

Для воды криоскопическая постоянная Кравна 1,85 эбулиоско-пическая постоянная Е равна 0,52. Для бензола С 6 Н 6 К = 5,1 , Е= 2,57; для уксусной кислоты СН 3 СООН К = 3,9 , Е = 3,07.

На измерениях температур кипения и замерзания растворов основаны эбулиоскопический и криоскопический методы определения молекулярных масс веществ.

Закон Рауля относится к бесконечно разбавленным идеальным растворам, применение его к реальным растворам ограничено тем в большей степени, чем выше их концентрация.

6.7. ОСМОС

Диффузия. Раствор представляет собой гомогенную (однородную) систему. Частицы растворённого вещества и растворителя находятся в беспорядочном тепловом движении и равномерно распределяются по всему объёму раствора. Если поместить в цилиндр концентрированный раствор какого-либо вещества, например сахара, а поверх него осторожно налить слой более разбавленного раствора сахара, то вначале сахар и вода будут распределены в объёме раствора неравномерно. Однако через некоторое время молекулы сахара и воды вновь равномерно распределятся по всему объёму жидкости. Это происходит потому, что молекулы сахара, беспорядочно двигаясь, проникают как из концентрированного раствора в разбавленный раствор, так и в обратном направлении; но при этом в течениелюбого промежутка времени из более концентрированного раствора в менее концентрированный переходит больше молекул сахара, чем из разбавленного раствора в концентрированный. Точно так же молекулы воды движутся в различных направлениях, но при этом из разбавленного раствора, более богатого водой, в концентрированный раствор переходит больше молекул воды, чем за то же время переносится в обратном направлении. Таким образом, возникает направленное перемещение сахара из концентрированного раствора в разбавленный, а воды – из разбавленного раствора в концентрированный. Каждое вещество переносится при этом туда, где его концентрация меньше. Такой самопроизвольный процесс перемещения вещества, приводящий к выравниванию его концентрации называется диффузией .

В ходе диффузии некоторая первоначальная упорядоченность в распределении веществ (высокая концентрация вещества в одной части системы и низкая – в другой) сменяется полной беспорядочностью их распределения.

Диффузию можно наблюдать, если налить в стеклянный цилиндр какой-либо окрашенный раствор, например раствор КМnО 4 , а сверху осторожно, чтобы не вызвать перемешивания, добавить воды. Вначале будет заметна резкая граница, но постепенно она будет размываться; через некоторое время растворённое вещество равномерно распределится по всему объёму раствора и вся жидкость примет один и тот же цвет.

В рассмотренном примере частицы растворителя и растворённого вещества диффундируют в противоположных направлениях. Такой случай называется встречной или двухсторонней диффузией . Иначе будет обстоять дело, если между двумя растворами поместить полупроницаемую перегородку, через которую растворитель может проходить, а растворённое вещество – нет. Например, если пропитать глиняный пористый цилиндр раствором сульфата меди, приготовленного из медного купороса, а затем погрузить его в раствор гексацианоферрата(II) калия, то в порах цилиндра осядет гексацианоферрат меди:

2CuSO 4 + K 4 = Cu 2 ↓ + K 2 SO 4 .

Обработанный таким образом глиняный цилиндр обладает свойствами полупроницаемой перегородки; через его стенки могут проходить молекулы воды, но для частиц растворённого вещества они непроницаемы.

Если в такой цилиндр налить раствор какого-либо вещества, например сахара, и погрузить цилиндр в воду, то выравнивание концентраций будет происходить только вследствие перемещения молекул воды. Последние в большем числе диффундируют в раствор, чем обратно, поэтому объём раствора будет постепенно увеличиваться, а концентрация сахара уменьшаться. Такая односторонняя диффузия через полупроницаемую перегородку называется осмосом .

Роль осмоса в жизни животных и растений. Оболочки клеток легко проницаемы для воды, но почти непроницаемы для веществ, растворённых во внутриклеточной жидкости. Проникая в клетки, вода создаёт в них избыточное давление, которое слегка растягивает оболочки клеток и поддерживает их в напряжённом состоянии, поэтому такие органы растения, как травянистые стебли, листья, лепестки цветов, обладают упругостью. Если срезать растение, то вследствие испарения воды объём внутриклеточной жидкости уменьшается, оболочки клеток опадают, становятся дряблыми – растение вянет. Если начавшее вянуть растение поставить в воду, начинается осмос , оболочки клеток снова напрягаются и растение принимает прежний вид.

Осмос является одной из причин, обусловливающих поднятие воды по стеблю растения, питание клеток и многие другие явления.

Если поместить эритроциты (красные клетки крови) в водопроводную воду, они лопнут, так как концентрация солей внутри эритроцитов значительна по сравнению с водой, где их практически нет. Вследствие осмоса вода войдёт внутрь клеток и разорвёт их. Поэтому лекарственные препараты для внутривенного введения готовят не на чистой воде, а на специальном (физиологическом) солевом растворе NaCl .

Осмотическое давление (p) внутреннее давление растворённого вещества, численно равное тому внешнему давлению, которое нужно приложить, чтобы прекратить осмос; оно зависит оттемпературы и концентрации, но не зависит ни от природы растворённого вещества, ни от природы растворителя. Эту зависимость Вант Гофф (1886) уподобил поведению идеального газа:

p = сRТ,

где p – осмотическое давление раствора, кПа;

с –молярная концентрация раствора (молярность), моль/л;

R – молярная газовая постоянная, 8,314 Дж/(моль∙К);

Т – абсолютная термодинамическая температура раствора.

Уравнение, описывающее закон Вант Гоффа, позволяет по величине осмотического давления раствора определять молярную массу (а значит, и относительную молекулярную массу) растворённого вещества:

где т –масса растворённого вещества, кг;

V –объём раствора, л;

М – молярная масса, кг/моль.

РАСТВОРЫ ЭЛЕКТРОЛИТОВ

ТЕОРИЯ АРРЕНИУСА

Растворы кислот, солей и оснований обладают электропроводностью, и их поведение отклоняется от законов разбавленных растворов Рауля и Вант Гоффа .

Теория ионизации, или электролитической диссоциации (Аррениус , 1887): «Молекулы кислот, оснований и солей в водном растворе частичнораспадаются на самостоятельные ионы. Чем больше таких ионов, тем больше электропроводность раствора. Но по мере распада молекул на ионы растёт и общее число частиц в растворе, так как при этом из одной частицы получаются две (или более) частиц. Следовательно, закон разбавленных растворов оказывается правильным и для водных растворов кислот, оснований и солей, если учитывать как самостоятельные частицы не только молекулы, но и возникающие при их распаде ионы».

Будучи сторонником «физической» теории растворов, Аррениус не учитывал взаимодействия растворённого вещества с растворителем и считал, что молекулы распадаются на свободные ионы. Изолированное рассмотрение процесса ионизации не давало возможности для его правильного понимания.

ТЕОРИЯ КАБЛУКОВА

И.А.Каблуков (1891) соединил представления С .Аррениуса и химическую теорию растворов Д.И.Менделеева : «По-нашему, вода, разлагая молекулы растворённого тела, входит с ионами в непрочные соединения, находящиеся в состоянии диссоциации; по мнению же Аррениуса, ионы свободно двигаются подобно тем отдельным атомам, которые происходят при диссоциации молекул галоидов при высокой температуре». С точки зрения Каблукова , в водных растворах содержатся не свободные, а гидратированные ионы, причём именно гидратация и является основной причиной ионизации молекул.

Положительно заряженные ионы называют катионами , отрицательно заряженные – анионами .

Процесс распада вещества на отдельные ионы. Около каждого из ионов, растворяемого в воде ионного вещества, например NаСl, отрицательный полюс диполя воды будет притягиваться к положительному иону Nа + , а положительный полюс отталкиваться и притягиваться к отрицательному иону Сl – . В результате около обоих ионов соберётся ряд притянутых ими диполярных молекул воды. Силы притяжения между ионами ослабевают настолько, что энергия взаимодействия с молекулами воды (гидратации) оказывается достаточной для того, чтобы отделить ионы друг от друга.

В растворителях менее полярных, чем вода, ориентация диполей около ионов происходит значительно меньше. Соответственно уменьшается и ослабление сил притяжения между ионами, из-за чего энергия гидратации может оказаться недостаточной для отделения их друг от друга. Поэтому распад молекулы на ионы обычно не наблюдается в таких малополярных растворителях, как диэтиловый эфир, бензол и т. п., и лишь сравнительно слабо происходит в растворителях промежуточной полярности, например в этиловом спирте. Ослабление сил притяжения между поляризованными атомами зависит от диэлектрической проницаемости (ε) растворителя , так как последняя входит в полное выражение основного закона электростатики – закона Кулона:

где F – сила взаимодействия зарядов q 1 и q 2 ;

r – расстояние между зарядами;

ε – диэлектрическая проницаемость растворителя.

Для воды при обычных условиях (20 0 C) ε = 81, поэтому в воде силы притяжения между ионами в 81 раз меньше, чем в кристалле (где для окружающего частицы пространства ε = 1). Значения ε для этилового спирта, диэтилового эфира и бензола соответственно равны 26,8 , 4 и 2.

Распад в воде на ионы наблюдается не только для ионных веществ, но и для веществ, молекулы которых в свободном состоянии являются полярными. Пример – HCl. Предварительная стадия распада – переход полярной структуры в ионную, происходящий под воздействием диполей воды. Притянувшиеся диполи воды к концам полярной молекулы обусловливают расхождение её полюсов, которое может закончиться тем, что молекула приобретёт ионную структуру.

У веществ с ионной и полярными связями распад на ионы идёт прежде всего по ионным связям, а затем по тем из полярных, которые ионогенны (т. е. способны достаточно легко переходить в ионные). По малополярным и неполярным ковалентным связям распад на ионы, как правило, не происходит.

(концентрация насыщенного раствора). На растворимость влияют множественные факторы : природа вещества , характер растворителя , внешние условия (температура , давление) . Разделяют:

  • малорастворимые вещества (растворимость менее 1 г на 100 г воды). Относят гипс, гашеную известь.
  • нерастворимые вещества (менее 0,1 г на 100 г воды). Относят: сульфат бария, бромид серебра , карбонат кальция;
  • легкорастворимые вещества (более 10 г на 100 г воды). К таким относят: поваренную соль, медный купорос, аммиак).

Необходимо помнить, что абсолютно нерастворимых веществ не бывает.

Влияние природы на растворимость веществ.

Издавна существовало правило: подобное растворяется в подобном . Т.е. спирты в спиртах, водные растворы - в воде , полярные соединения (альдегиды и т.д.) - в полярных растворах.

Растворимость газовых смесей в жидкостях варьируется в широких диапазонах. Например, в 100 объемах воды может раствориться 2 объема H 2 , 3 объема O 2 и 700 объемов NH 3 .

Растворимость жидкостей в жидкостях зависит всецело от природы веществ. Модно выделить 3 класса жидкостей :

1. Жидкости, которые неограниченно растворяются друг в друге (воды - спирт, вода - уксусная кислота);

2. Жидкости, которые почти не растворяются друг в друге (вода - ртуть, бензол);

3. Жидкости, которые ограниченно растворяются друг в друге (вода - эфир, амин и т.д.).

Растворимость твердых веществ в жидких средах зависит от характера химической связи в кристаллической решетке. Молекулярные структуры имеют малую растворимость в воде, ковалентные неполярные соединения - не растворимы, а ковалентные полярные - растворяются.

Неорганические соли имеют различную растворимость в воде. Например, соли азотной и азотистой кислот , подавляющее большинство фторидов, бромидов и иодидов также хорошо растворимы, а вот соли угольной кислоты (кроме солей щелочных металлов и NH 4 + ) - имеют малую растворимость.

Влияние температуры на растворимость веществ.

Существует основное правило: с повышением температуры растворимость всех твердых веществ повышается.

Приведенная зависимость показывает, что с повышением температуры растворимость данных содей увеличивается. Растворимость NaCl изменяется мало, о чем свидетельствует график.

Взаимная растворимость твердых веществ и жидкостей повышается с увеличением температуры. Ограниченная растворимость может перейти в неограниченную и наоборот.

Критическая температура растворения - такая температура, выше или ниже которой жидкости смешиваются между собой в неограниченных количествах.

Растворимость газов в жидкостях с повышением температуры уменьшается, а с понижением увеличивается..

Примеры растворимости газов при различных температурах.

Влияние давления на растворимость веществ.

На растворимость газов больше влияние оказывает давление. При конкретных температуре и давлении газ растворяется до тех пор, пока скорость отрыва молекул газа от поверхности не станет равной скорости, с которой молекулы газа проникают в жидкость. В этот момент устанавливается равновесие, и жидкость становится насыщенным газом.

Зависимость растворимости газов описывается законом Генри :

При постоянной температуре растворимость газа в жидкости прямо пропорциональна его давлению над жидкостью:

C (X ) = Kr·P (X ),

где С(Х) - концентрация газа в насыщенном растворе, моль/л;

K r - постоянная Генри моль·л -1 ·Па -1 ;

Р(Х) - давление газа над раствором, Па.

Также вещества могут взаимно влиять друг на друга. Если раствор содержит электролиты, то вещества растворяются намного хуже, чем в простой воде.

Уменьшение растворимости газов в присутствие электролитов объясняется гидратацией ионов, вследствие чего понижается концентрация свободных молекул воды.


Самое обсуждаемое
Жизнь индейцев Аризоны после «заморозков Апачи- ожесточенные воины и опытные стратеги Жизнь индейцев Аризоны после «заморозков Апачи- ожесточенные воины и опытные стратеги
Изольда и Тристан: красивая история вечной любви Изольда и Тристан: красивая история вечной любви
Стипендия программы пять с плюсом Стипендия программы пять с плюсом


top