Какая волна называется плоской. Уравнения плоской и сферической волн. Понятие о волнах

Какая волна называется плоской. Уравнения плоской и сферической волн. Понятие о волнах

При описании волнового процесса требуется найти амплитуды и фазы колебательного движения в различных точках среды и изменение этих величин с течением времени. Эта задача может быть решена в том случае, если известно, по какому закону колеблется и как взаимодействует со средой тело, вызвавшее волновой процесс. Однако во многих случаях не существенно, каким телом возбуждена данная волна, а решается более простая задача. Задано состояние колебательного движения в некоторых точках среды в определенный момент времени и требуется определить состояние колебательного движения в других точках среды.

Для примера рассмотрим решение такой задачи в простом, но вместе с тем важным случае распространения в среде плоской или сферической гармонической волны. Обозначим колеблющуюся величину через u . Этой величиной могут быть: смещение частиц среды относительно их положения равновесия, отклонения давления в данном месте среды от равновесного значения и т.д. Тогда задача будет состоять в отыскании так называемого уравнения волны – выражения, которое задает колеблющуюся величину u как функцию координат точек среды x , y , z и времени t :

u = u (x , y , z , t ). (2.1)

Пусть для простоты u – это смещение точек в упругой среде, когда в ней распространяется плоская волна, а колебания точек имеют гармонический характер. Кроме того, направим оси координат так, чтобы ось совпала с направлением распространения волны. Тогда волновые поверхности (семейство плоскостей) будут перпендикулярными к оси (рис. 7), и поскольку все точки волновой поверхности колеблются одинаково, смещение u будет зависеть только от х и t : u = u (x , t ). Для гармонических колебаний точек, лежащих в плоскости х = 0 (рис. 9), справедливо уравнение:

u (0, t ) = A cos (ωt + α ) (2.2)


Найдем вид колебаний точек плоскости, соответствующей произвольному значению х . Для того чтобы пройти путь от плоскости х = 0 до этой плоскости, волне требуется время τ = х/с (с – скорость распространения волны). Следовательно, колебания частиц, лежащих в плоскости х , будут иметь вид:

Итак, уравнение плоской волны (и продольной, и поперечной), распространяющейся в направлении оси 0х, выглядит следующим образом:

(2.3)

Величина А представляет собой амплитуду волны. Начальная фаза волны α определяется выбором начал отсчета х и t .

Зафиксируем какое-либо значение фазы, стоящей в квадратных скобках уравнения (2.3), положив

(2.4)

Продифференцируем это равенство по времени с учетом того, что циклическая частота ω и начальная фаза α являются постоянными:

Таким образом, скорость распространения волны с в уравнении (2.3) есть скорость перемещения фазы, в связи с чем ее называют фазовой скоростью . В соответствии с (2.5) dx /dt > 0. Следовательно, уравнение (2.3) описывает волну, распространяющуюся в направлении возрастания х , так называемую бегущую прогрессивную волну . Волна, распространяющаяся в противоположном направлении, описывается уравнением

и называется бегущей регрессивной волной . Действительно, приравняв константе фазу волны (2.6) и продифференцировав получившееся равенство, придем к соотношению:

из которого следует, что волна (2.6) распространяется в сторону убывания х .

Введем величину

которая называется волновым числом и равна количеству длин волн, укладывающихся на интервале 2π метров. С помощью формул λ = с/ν и ω = 2πν волновое число можно представить в виде

(2.8)

Раскрыв скобки в формулах (2.3) и (2.6) и приняв во внимание (2.8), придем к следующему уравнению плоских волн, распространяющихся вдоль (знак «-») и против (знак «+») оси 0х :

При выводе формул (2.3) и (2.6) предполагалось, что амплитуда колебаний не зависит от х . Для плоской волны это наблюдается в том случае, когда энергия волны не поглощается средой. Опыт показывает, что в поглощающей среде интенсивность волны по мере удаления от источника колебаний постепенно уменьшается – наблюдается затухание волны по экспоненциальному закону:

.

Соответственно, уравнение плоской затухающей волны имеет вид:

где A 0 – амплитуда в точках плоскости х = 0, а γ – коэффициент затухания.

Теперь найдем уравнение сферической волны . Всякий реальный источник волн обладает некоторой протяженностью. Однако если ограничиться рассмотрением волны на расстояниях от источника, много больших его размеров, то источник можно считать точечным . В изотропной и однородной среде волна, порождаемая точечным источником, будет сферической. Допустим, что фаза колебаний источника ωt+α . Тогда точки, лежащие на волновой поверхности радиуса r , будут колебаться с фазой

Амплитуда колебаний в этом случае, даже если энергия волны не поглощается средой, постоянной не останется – она убывает в зависимости от расстояния от источника по закону 1/r . Следовательно, уравнение сферической волны имеет вид:

(2.11)

где А – постоянная величина, численно равная амплитуде колебаний на расстоянии от источника, равном единице.

Для поглощающей среды в (2.11) нужно добавить множитель e - γr . Напомним, что в силу сделанных предположений уравнение (2.11) справедливо только для r , значительно превышающих размеры источника колебаний. При стремлении r к нулю амплитуда обращается в бесконечность. Этот абсурдный результат объясняется неприменимостью уравнения (2.11) для малых r .

Уравнением волны называется выражение, которое дает смещение колеблющейся частицы как функцию ее координат х, у, z и времени t:

(имеются в виду координаты равновесного положения частицы). Эта функция должна быть периодической как относительно времени t, так и относительно координат х, у, z. Периодичность по времени вытекает из того, что описывает колебания частицы с координатами х, у, z. Периодичность по координатам следует из того, что точки, отстоящие друг от друга на расстояние К, колеблются одинаковым образом.

Найдем вид функции в случае плоской волны, предполагая, что колебания иосят гармонический характер. Для упрощения направим оси координат так, чтобы ось совпала с направлением распространения волны. Тогда волновые поверхности будут перпендикулярными к оси и, поскольку все точки волновой поверхности колеблются одинаково, смещение будет зависеть только от Пусть колебания точек, лежащих в плоскости (рис. 94.1), имеют вид

Найдем вид колебания точек в плоскости, соответствующей произвольному значению х. Для того чтобы пройти путь от плоскости х= 0 до этой плоскости, волне требуется время - скорость распространения волны).

Следовательно, колебания частиц, лежащих в плоскости х, будут отставать по времени на от колебаний частиц в плоскости т. е. будут иметь вид

Итак, уравнение плоской волны (и продольной, и поперечной), распространяющейся в направлении оси х, выглядит следующим образом:

Величина а представляет собой амплитуду волны. Начальная фаза волны а определяется выбором начал отсчета При рассмотрении одной волны начала отсчета времени и координаты обычно выбираются так, чтобы а была равной нулю. При совместном рассмотрении нескольких волн сделать так, чтобы для всех них начальные фазы равнялись нулю, как правило, не удается.

Зафиксируем какое-либо значение фазы, стоящей в уравнении (94.2), положив

(94.3)

Это выражение определяет связь между временем t и тем местом х, в котором фаза имеет зафиксированное значение. Вытекающеё из него значение дает скорость, с которой перемещается данное значение фазы. Продифференцировав выражение (94.3), получим

Таким образом, скорость распространения волны v в уравнении (94.2) есть скорость перемещения фазы, в связи с чем ее называют фазовой скоростью.

Согласно (94.4) . Следовательно, уравнение (94.2) описывает волну, распространяющуюся в сторону возрастания х. Волна, распространяющаяся в противоположном направлении, описывается уравнением

Действительно, приравняв константе фазу волны (94.5) и продифференцировав получившееся равенство, придем к соотношению

из которого следует, что волна (94.5) распространяется в сторону убывания х.

Уравнению плоской волны можно придать симметричный относительно х и t вид. Для этого введем величину

которая называется волновым числом. Умиожив числитель и знаменатель выражения (94.6) на частоту v, можно представить волновое число в виде

(см. формулу (93.2)). Раскрыв в (94.2) круглые скобки и приняв во внимание (94.7), придем к следующему уравнению плоской волны, распространяющейся вдоль оси х:

Уравнение волны, распространяющейся в сторону убывания х, отличается от (94.8) только знаком при члене

При выводе формулы (94.8) мы предполагали, что амплитуда колебаний не зависит от х. Для плоской волны это наблюдается в том случае, когда энергия волиы не поглощается средой. При распространении в поглощающей энергию среде интенсивность волны С удалением от источника колебаний постепенно уменьшается - наблюдается затухание волны. Опыт показывает, что в однородной среде такое затухание происходит по экспоненциальному закону: с убыванием во времени амплитуды затухающих колебаний; см. формулу (58.7) 1-го тома). Соответственно уравнение плоской волны имеет следующий вид:

Амплитуда в точках плоскости

Теперь найдем уравнение сферической волны. Всякий реальный источник волн обладает некоторой протяженностью. Однако если ограничиться рассмотрением волны на расстояниях от источника, значительно превышающих его размеры, то источник можно считать точечным. В изотропной и однородной среде волна, порождаемая точечным источником, будет сферической. Допустим, что фаза колебаний источника равна Тогда точки, лежащие на волновой поверхности радиуса , будут колебаться с фазой

Волновые процессы

Основные понятия и определения

Рассмотрим некоторую упругую среду - твёрдую, жидкую или га­зообразную. Если в каком-либо месте этой среды возбудить колебания её частиц, то вследствие взаимодействия между частицами, колебания будут, передаваясь от одной частицы среды к другой распространяться в среде с некоторой скоростью . Процесс распространения колеба­ний в пространстве называется волной .

Если частицы в среде колеблются в направлении распростране­ния волны, то она называется продольной. Если колебания частиц происходят в плоскости, перпендикулярной направлению распространения волны, то волна называется попереч­ной . Поперечные механические волны могут возникнуть только в сре­де, обладающей ненулевым модулем сдвига. Поэтому в жидкой и газо­образной средах могут распространяться только продольные волны . Различие между продольными и поперечными волнами наиболее хорошо видно на примере распространения колебаний в пружине - см. рисунок.

Для характеристики поперечных колебаний необходимо задать положение в пространстве плоскости, проходящей через направление колебаний и направление распространения волны - плоскости поляризации .

Область пространства, в которой колеблются все частицы среды, называется волновым полем . Граница между волновым полем и остальным пространством среды называется фронтом волны . Иначе говоря, фронт волны - геометрическое место точек, до которых колебания дошли к данному моменту времени . В однородной и изотропной среде направление распространения волны перпендикулярно к фронту волны.

Пока в среде существует волна, частицы среды совершают колебания около своих положений равновесия. Пусть эти колебания являются гармоническими, и период этих колеба­ний равен Т . Частицы, отстоящие друг от друга на расстояние

вдоль направления распространения волны, совершают колебания одинаковым образом, т.е. в каждый дан­ный момент времени их смещения одинаковы. Расстояние называется длиной волны . Другими словами, длина волны есть расстояние, на которое распространяется волна за один период колебаний .

Геометрическое место точек, совершающих колебания в одной фазе называется волновой поверхностью . Фронт волны – частный случай волновой поверхности. Длина волны – минимальное расстояние между двумя волновыми поверхностями, в которых точки колеблются одинаковым образом, или можно сказать, что фазы их колебаний отличаются на .

Если волновые поверхности являются плоскостями, то волна называется плоской , а если сферами – то сферической. Плоская волна возбуждается в сплошной однородной и изотропной среде при колебаниях бесконечной плоскости. Возбуждение сферической можно представить в виде результата радиальных пульсаций сферической поверхности, а также как результат действия точечного источника, размерами которого по сравнению с расстоянием до точки наблюдения можно пренебречь. Поскольку любой реальный источник имеет конечные размеры, на достаточно большом расстоянии от него волна будет близка к сферической. В то же время участок волновой поверхности сферической волны по мере уменьшения его размеров становится сколь угодно близким к участку волновой поверхности плоской волны.

Уравнения плоской и сферической волн

Уравнением волны называется выражение, которое определяет сме­щение колеблющейся точки, как функцию координат равновесного поло­жения точки и времени:

Если источник совершает периодические колебания, то функция(22.2) должна быть периодической функцией и координат и времени. Периодичность по времениследует из того, что функция описывает пе­риодические колебания точки с координатами; периодич­ность по координатам - из того, что точки находящиеся на расстоя­нии вдоль направления распространения волны, колеблются одинаковым образом

Ограничимся рассмотрением гармонических волн, когда точки среды совершают гармонические колебания. Необходимо отметить, что любую негармоническую функцию можно представить в виде результата наложения гармонических волн. Поэтому рассмотрение только гармонических волн не приводит к принципиальному ухудшению общности получаемых результатов.

Рассмотрим плоскую волну. Выберем систему координат так, чтобы ось Ох совпадала с направлением распространения волны. Тогда волновые поверхности будут перпендикулярны к оси Ох и, поскольку все точки волновой поверхности ко­леблются одинаково, смещение точек среды из положений равновесия будет зависеть только отх и t :

Пусть колебания точек, лежащих в плоскости имеют вид:

(22.4)

Колебания в плоскости, находящейся на расстоянии х от начала координат, отстают по времени от колебаний в на промежуток времени , необходимый волне для преодоления расстояния х, и описываются уравнением

которое и является уравнением плоской волны, распространяющейся в направлении оси Ох.

При выводе уравнения (22.5) мы предполагали амплитуду колебаний одинаковой во всех точках. В случае плоской волны это выполняет­ся, если энергия волны не поглощается средой.

Рассмотрим некоторое значение фазы, стоящей в уравнении (22.5):

(22.6)

Уравнение (22.6) даёт связь между временем t и местом - х , в котором указанное значение фазы осуществляется в данный момент. Определив из уравнения (22.6) , мы най­дём скорость, с которой перемещается данное значение фазы. Диффе­ренцируя(22.6), получаем:

Откуда следует (22.7)

Механические волны – процесс распространения механических колебаний в среде (жидкой, твердой, газообразной).Следует запомнить, что механические волны переносят энергию, форму, но не переносят массу.Важнейшей характеристикой волны является скорость ее распространения. Волны любой природы не распространяются в пространстве мгновенно, их скорость конечна.

По геометрии различают : сферические (пространственные), одномерные (плоские), спиральные волны.

Волна называется плоской , если ее волновые повеpхности пpедставляют собой паpаллельные дpуг дpугу плоскости, пеpпендикуляpные фазовой скоpости волны (pис.1.3). Следовательно, лучи плоской волны - суть паpаллельные пpямые.

Уравнение плоской волны::

Параметры :

Период колебаний Т – промежуток времени, через который состояние системы принимают одинаковые значения: u(t + T) = u(t).

Частота колебаний n – число колебаний в 1 секунду, величина, обратная периоду: n = 1/Т. Измеряется в герцах (Гц), имеет размерность с–1. Маятник, совершающий одно качание в секунду, колеблется с частотой 1 Гц

Фаза колебаний j – величина, показывающая, какая часть колебания прошла с начала процесса. Измеряется в угловых величинах – градусах или радианах.

Амплитуда колебаний А – максимальное значение, которое принимает колебательная система, «размах» колебания.

4.Эффе́кт До́плера - изменение частоты и длины волн, воспринимаемых наблюдателем(приемником волн), вследствие относительного движения источника волн и наблюдателя. Представим , что наблюдатель приближается с определенной скоростью к неподвижному источнику волн. При этом он встречает за один и тот же интервал времени больше волн, чем при отсутствии движения. Это означает, что воспринимаемая частота больше частоты волны, испускаемой источником. Так длина волны, частота и скорость распространения волны связаны между собой соотношением V= / , - длина волны.

Дифракция - явление огибания препятствий, к-ые сравнимы по своим размерам с длиной волны.

Интерференция- явление, при к-ром в результате наложения когерентных волн возникает либо усиление либо ослабление колебаний.

Опыт Юнга Первым интерференционным опытом, получившим объяснение на основе волновой теории света, явился опыт Юнга (1802 г.). В опыте Юнга свет от источника, в качестве которого служила узкая щель S, падал на экран с двумя близко расположенными щелями S1 и S2. Проходя через каждую из щелей, световой пучок уширялся вследствие дифракции, поэтому на белом экране Э световые пучки, прошедшие через щели S1 и S2, перекрывались. В области перекрытия световых пучков наблюдалась интерференционная картина в виде чередующихся светлых и темных полос.

2.Звук -механич.продольн.волна,к-ая распростр-ся в упругих средах, имеет частоту от 16Гц до 20кГц. Различают виды звуков:

1.простой тон- чисто гармоническ.колебание,излучаемое камертоном(металлич. инструмент,издающий при ударе звук):

2.сложный тон- не синусоидально, но периодическое колебание (излучается различными музык.инструментами).

По теореме Фурье такое сложное колебание можно представить набором гармонических составляющих с разными частотами. Наим.частота наз-ся основным тоном,а кратные частоты – обертонами. Набор частот с указанием их относительной интенсивности(плотности потока энергии волны) наз-ся акустическим спктром. Спктр сложного тона линейсатый.

3.шум- звук,к-ый получается от сложения множества несогласованных источников. Спектр- непрерывистый (сплошной):

4.звуковой удар- кратковременное звуковое воздействие.Н-р: хлопок, взрыв.

Волновое сопротивление- отношение звукового давления в плоской волне к скорости колебания частиц среды. Характеризует степень жесткости среды(т.е. способность среды сопротивляться образованию деформаций) в бегущей волне. Выражается формулой:

P/V=p/c, P- звуковое давление, р- плотность, с- скорость звука, V- объем.

3 - характеристики, не зависящие от свойств приемника:

Интенсивность (сила звука) - энергия, проносимая звуковой волной за единицу времени через единицу площади, установленной перпендикулярно волне звука.

Частота основного тона.

Спектр звука - количество обертонов.

При частотах ниже 17 и выше 20000 Гц колебания давления уже не воспринимаются человеческим ухом. Продольные механические волны с частотой менее 17 Гц получили название инфразвука. Продольные механические волны с частотой, превышающей 20000 Гц, называют ультразвуком.

5. УЗ - механическ. волна с частотой более 20кГц. УЗ представляет собой чередования сгущений и разряжения среды. В каждой среде скорость распростр-я УЗ одинакова. Особенность - узость пучка, что позволяет воздействовать на объекты локально. В неоднородных средах с мелкими включениями частиц имеет место явления дифракции(огибание препятствий). Проникновение УЗ в другую среду характеризуется коэффициентом проникновения() =L /L где длины УЗ после и до проникновения в среду.

Действие УЗ на ткани организма механическое, тепловое, химическое. Применение в медицине делится на 2 направления: метод исследования и диагностики, и метод действия. 1)эхоэнцефалография - опред.опухолей и отека мозга; кардиография - измерение сердца в динамике. 2) УЗ физиотерапия- механическое и тепловое воздействие на ткань; при операциях как «УЗ-скальпель»

6. Идеальная жидкость – воображаемая несжимаемая жидкость, лишенная вязкости и теплопроводности. В идеальной жидкости отсутствует внутреннее трение, она непрерывна и не имеет структуры.

Уравнение неразрывности -V 1 A 1 = V 2 A 2 Объемный расход во всякой трубке тока, ограниченной соседними линиями тока, должен быть в любой момент времени одинаков во всех ее поперечных сечениях

Уравнение Бернулли - рv 2 / 2 + р ст + р gh = const, в случае установившегося течения, полный напор одинаков во всех поперечных сечениях трубки тока. рv 2 / 2 + р ст = const – для гориз. участков.

7Стационарный поток - поток, скорость которого в любом месте жидкости никогда не изменяется.

Ламинарное течение - упорядоченное течение жидкости или газа, при котором жидкость (газ) перемещается как бы слоями, параллельными направлению течения.

Турбулентное течение - форма течения жидкости или газа, при которой их элементы совершают неупорядоченные, неустановившиеся движения по сложным траекториям, что приводит к интенсивному перемешиванию между слоями движущихся жидкости или газа.

Линии – линии, касательные к которым совпадают во всех т. с направлением скорости в этих точках. При стационарном течении линии тока не меняются со временем.

Вязкость - внутреннее трение, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой

Уравнение Ньютона : F = (dv/dx)Sη.

Коэффициент вязкости - Коэффициент пропорциональности, зависящий от сорта жидкости или газа. Число, служащее для количественной характеристики свойства вязкости. Коэффициент внутреннего трения.

Неньютоновской жидкостью называют жидкость, при течении которой её вязкость зависит от градиента скорости, течение которых подчиняется уравнению Ньютона. (Полимеры, крахмал, жидкое мыло кровь)

Ньютоновская - Если в движущейся жидкости её вязкость зависит только от её природы и температуры и не зависит от градиента скорости. (Вода и дизельное топливо)

.Рейнольдса число - характеризующее соотношение между инерционными силами и силами вязкости: Re =rdv/m, где r - плотность, m - динамический коэффициент вязкости жидкости или газа, v - скорость потока.При R < Rekр возможно лишь ламинарное течение жидкости, а при Re > Rekр течение может стать турбулентным.

Кинематический коэффициент вязкости - отношение динамической вязкости жидкости или газа к их плотности.

9. Метод Стокса , В основе метода Стоксалежит формула для силы сопротивления, возникающей при движении шарика в вязкой жидкости, полученная Стоксом: Fc = 6 π η V r . Чтобы косвенно измерить коэффициент вязкости η следует рассмотреть равномерное движение шарика в вязкой жидкости и применить условие равномерного движения: векторная сумма всех сил, действующая на шарик равна нулю.

Mg + F A + F с =0 (всё в векторной форме!!!)

Теперь следует выразить силу тяжести (mg) и силу Архимеда (Fа) через известные величины. Приравнивая величины mg = Fа+Fс получаем выражение для вязкости:

η = (2/9)*g*(ρ т - ρ ж)* r 2 / v = (2/9) * g *(ρ т - ρ ж)* r 2 * t / L. Непосредственно измеряются микрометром радиус шарика r (по диаметру), L - путь шарика в жидкости, t- время прохождения пути L. Для измерения вязкости по методу Стокса путь L берется не от поверхности жидкости, а между отметками 1 и 2. Это вызвано следующим обстоятельством. При выводе рабочей формулы для коэффициента вязкости по методу Стокса использовалось условие равномерного движения. В самом начале движения (начальная скорость шарика равна нулю) сила сопротивления также равна нулю и шарик имеет некоторое ускорение. По мере набора скорости сила сопротивления увеличивается, равнодействующая трех сил - уменьшается! Только после некоторой отметки движение можно считать равномерным (и то, - приблизительно).

11.Формула Пуазёйля : При установившемся ламинарном движении вязкой несжимаемой жидкости сквозь цилиндрическую трубу круглого сечения секундный объёмный расход прямо пропорционален перепаду давления на единицу длины трубы и четвертой степени радиуса и обратно пропорционален коэффициенту вязкости жидкости.

На правах рукописи

Физика

Конспект лекций

(Часть 5. Волны, волновая оптика)

Для студентов направления 230400

«Информационные системы и технологии»

Электронный образовательный ресурс

Составитель: к.ф.-м.н., доцент В.В. Коноваленко

Протокол № 1 от 04. 09. 2013 г.


Волновые процессы

Основные понятия и определения

Рассмотрим некоторую упругую среду - твёрдую, жидкую или га­зообразную. Если в каком-либо месте этой среды возбудить колебания её частиц, то вследствие взаимодействия между частицами, колебания будут, передаваясь от одной частицы среды к другой распространяться в среде с некоторой скоростью . Процесс распространения колеба­ний в пространстве называется волной .

Если частицы в среде колеблются в направлении распростране­ния волны, то она называется продольной. Если колебания частиц происходят в плоскости, перпендикулярной направлению распространения волны, то волна называется попереч­ной . Поперечные механические волны могут возникнуть только в сре­де, обладающей ненулевым модулем сдвига. Поэтому в жидкой и газо­образной средах могут распространяться только продольные волны . Различие между продольными и поперечными волнами наиболее хорошо видно на примере распространения колебаний в пружине - см. рисунок.

Для характеристики поперечных колебаний необходимо задать положение в пространстве плоскости, проходящей через направление колебаний и направление распространения волны - плоскости поляризации .

Область пространства, в которой колеблются все частицы среды, называется волновым полем . Граница между волновым полем и остальным пространством среды называется фронтом волны . Иначе говоря, фронт волны - геометрическое место точек, до которых колебания дошли к данному моменту времени . В однородной и изотропной среде направление распространения волны перпендикулярно к фронту волны.



Пока в среде существует волна, частицы среды совершают колебания около своих положений равновесия. Пусть эти колебания являются гармоническими, и период этих колеба­ний равен Т . Частицы, отстоящие друг от друга на расстояние

вдоль направления распространения волны, совершают колебания одинаковым образом, т.е. в каждый дан­ный момент времени их смещения одинаковы. Расстояние называется длиной волны . Другими словами, длина волны есть расстояние, на которое распространяется волна за один период колебаний .

Геометрическое место точек, совершающих колебания в одной фазе называется волновой поверхностью . Фронт волны – частный случай волновой поверхности. Длина волны – минимальное расстояние между двумя волновыми поверхностями, в которых точки колеблются одинаковым образом, или можно сказать, что фазы их колебаний отличаются на .

Если волновые поверхности являются плоскостями, то волна называется плоской , а если сферами – то сферической. Плоская волна возбуждается в сплошной однородной и изотропной среде при колебаниях бесконечной плоскости. Возбуждение сферической можно представить в виде результата радиальных пульсаций сферической поверхности, а также как результат действия точечного источника, размерами которого по сравнению с расстоянием до точки наблюдения можно пренебречь. Поскольку любой реальный источник имеет конечные размеры, на достаточно большом расстоянии от него волна будет близка к сферической. В то же время участок волновой поверхности сферической волны по мере уменьшения его размеров становится сколь угодно близким к участку волновой поверхности плоской волны.

Уравнение плоской волны, распространяющейся

В произвольном направлении

Получим. Пусть колебания в плоскости, параллельной волновым поверхностям и проходящей через начало коорди­нат, имеют вид:

В плоскости, отстоящей от начала координат на расстояние l , колебания будут отставать по времени на . Поэтому уравнение колебаний в этой плоскости имеет вид:

Из аналитической геометрии известно, что расстояние от начала ко­ординат до некоторой плоскости равно скалярному произведению ради­ус-вектора некоторой точки плоскости на единичный вектор нормали к плоскости: . Рисунок иллюстрирует данное положение для двумерного случая. Подставим значение l в урав­нение (22.13):

(22.14)

Вектор , равный по модулю волновому числу и направленный по нормали к волновой поверхности, называется волновым вектором . Уравнение плоской волны можно теперь записать в виде:

Функция (22.15) даёт отклонение от положения равновесия точки с радиус-вектором в момент времени t . Для того, чтобы представить зависимость от координат и времени в явном виде необходимо учесть, что

. (22.16)

Теперь уравнение плоской волны принимает вид:

Часто оказывается полезным представить уравнение волны в экспоненциальной форме . Для этого воспользуемся формулой Эйлера:

где , запишем уравнение (22.15) в виде:

. (22.19)

Волновое уравнение

Уравнение любой волны является решением дифференциального уравнения второго порядка, называемого волновым . Для того чтобы установить вид этого уравнения, найдем вторые производные по каждому из аргументов уравнения плоской волны (22.17):

, (22.20)

, (22.21)

, (22.22)

Сложим первые три уравнения с производными по координатам:

. (22.24)

Выразим из уравнения (22.23) : , и учтем, что :

(22.25)

Сумму вторых производных в левой части (22.25) представим как результат действия оператора Лапласа на , и в окончательном виде представим волновое уравнение в виде:

(22.26)

Примечательно, что в волновом уравнении квадратный корень из величины, обратной коэффициенту при производной по времени дает скорость распространения волны .

Можно показать, что волновому уравнению (22.26) удовлетворяет любая функция вида:

и каждая из них является уравнением волны и описывает некоторую волну.

Энергия упругой волны

Рассмотрим в среде, в которой распространяется упругая вол­на (22.10), элементарный объём достаточно малый, чтобы деформацию и скорость движения частиц в нём можно было считать постоянными и равными:

Вследствие распространения в среде волны объём обладает энергией упругой деформации

(22.38)

В соответствии с (22.35) модуль Юнга можно представить в виде . Поэтому:

. (22.39)

Рассматриваемый объём обладает также кинетической энергией:

. (22.40)

Полная энергия объёма:

А плотность энергии:

, а (22.43)

Подставим эти выражения в (22.42) и учтем, что :

Таким образом, плотность энергии различна в разных точках про­странства и меняется во времени по закону квадрата синуса .

Сред­нее значение квадрата синуса равно 1/2, а значит среднее по времени значение плотности энергии в каждой точке среды , в которой распространяется волна:

. (22.45)

Выражение (22.45) справедливо для всех видов волн.

Итак, среда, в которой распространяется волна, обладает дополнительным запасом энергии . Следовательно, волна переносит с собой энергию .

Х.6 Излучение диполя

Колеблющийся электрический диполь , т.е. диполь, электрический момент которого периодически изменяется, например, по гармоническому закону, является простейшей системой, излучающей электромагнитные волны. Одним из важных примеров колеблющегося диполя является система состоящая из отрицательного заряда , который колеблется вблизи положительного заряда . Именно такая ситуация реализуется при воздействии электромагнитной волны на атом вещества, когда под действием поля волны электроны совершают колебания в окрестности ядра атома.

Предположим, что дипольный момент изменяется по гармоническому закону:

где - радиус-вектор отрицательного заряда, l - амплитуда колебания, - единичный вектор, направленный вдоль оси диполя.

Ограничимся рассмотрением элементарного диполя , размеры которого малы по сравнению с излучаемой длиной волны и рассмотрим волновую зону диполя, т.е. область пространства для которой модуль радиус-вектора точки . В волновой зоне однородной и изотропной среды фронт волны будет сферическим - рисунок 22.4.

Электродинамический расчет показывает, что вектор волны лежит в плоскости, проходящей через ось диполя и радиус-вектор рассматриваемой точки. Амплитуды и зависят от расстояния r и угла между и осью диполя. В вакууме

Поскольку вектор Пойнтинга , то

, (22.33)

и можно утверждать, что сильнее всего диполь излучает в направлениях, соответст­вующих , и диаграмма направленности излу­чения диполя имеет вид, показанный на рисунке 22.5. Диаграммой направленности называется графическое изображение распределения интенсивности излучения по различным направлениям в виде кривой построен­ной так, чтобы длина отрезка луча, проведенного из диполя в некотором направлении до точки кривой, была пропорциональна интенсивности излучения.

Расчеты показывают также, что мощность Р излучения диполя пропорциональнаквадрату второй производной по времени от дипольного момента :

Поскольку

, (22.35)

то средняя мощность

оказывается пропорциональной квадрату амплитуды дипольного момента и четвертой степени частоты .

С другой стороны, учитывая, что и , получаем, что мощность излучения пропорциональна квадрату ускорения :

Это утверждение справедливо не только при колебаниях заряда, но и для произвольного движения заряда.


Волновая оптика

В этом разделе мы будем рассматривать такие световые явления, в которых проявляется волновая природа света. Напомним, что для света характерен корпускулярно-волновой дуализм и существуют явления, объяснимые только на основе представления о свете, как о потоке частиц. Но эти явления мы рассмотрим в квантовой оптике.

Общие сведения о свете

Итак, считаем свет электромагнитной волной. В электромагнитной волне колеблется и . Экспериментально установлено, что физиологическое, фотохимическое, фотоэлектрическое и другие действия света определяются вектором световой волны, поэтому его называют световым. Соответственно, будем считать, что световая волна описывается уравнением:

где - амплитуда,

- волновое число (волновой вектор),

Расстояние вдоль направления распространения.

Плоскость, в которой колеблется , называется плоскостью колебаний . Световая волна распространяется со скоростью

, (2)

называется показателем преломления и характеризует отличие скорости света в данной среде от скорости света в вакууме (пустоте).

В большинстве случаев у прозрачных веществ магнитная проницаемость , и почти всегда можно считать, что показатель преломления определяется диэлектрической проницаемостью среды:

Значение n используют для характеристики оптической плотности среды: чем больше n, тем более оптически плотной называется среда .

Видимый свет имеет в вакууме длины волн в интервале и частоты

Гц

Реальные приемники света не в состоянии уследить за столь быстротечными процессами и регистрируют усредненный во времени поток энергии . По определению, интенсивностью света называется модуль среднего по времени значения плотности потока энергии, переносимой световой волной :

(4)

Поскольку в электромагнитной волне

, (6)

Ι ~ ~ ~ (7)

I ~ A 2 (8)

Лучами будем называть линии, вдоль которых распространяется световая энергия.

Вектор среднего потока энергии всегда направлен по касательной к лучу . В изотропных средах совпадает по направлению с нормалью к волновым поверхностям.

В естественном свете имеются волны с самыми различными ориентациями плоскости колебаний. Поэтому, не смотря на поперечность световых волн, излучение обычных источников света не обнаруживает асимметрии относительно направления распространения. Эта особенность света (естественного) объясняется следующим: результирующая световая волна источника складывается из волн, испущенных различными атомами. Каждый атом излучает волну в течение секунд. За это время в пространстве образуется цуг волн (последовательность «горбов и впадин») длиной приблизительно 3 метра.

Плоскость колебаний каждого цуга вполне определённа. Но одновременно свои цуги излучают огромное число атомов, а плоскость колебаний каждого цуга ориентирована независимо от других, случайным образом. Поэтому в результирующей волне от тела колебания различных направлений представлены с равной вероятностью. Это означает, что, если некоторым прибором исследовать интенсивность света с различной ориентацией вектора , то в естественном свете интенсивность не зависит от ориентации .

Измерение интенсивности процесс длительный по сравнению с периодом волны, и рассмотренные представления о природе естественного света удобны при описании достаточно длительных процессов.

Однако в данный момент времени в конкретной точке пространства в результате сложения векторов отдельных цугов образуется некоторый конкретный . Вследствие случайных «включений» и «выключений» отдельных атомов световая волна возбуждает в данной точке колебание, близкое к гармоническому, но амплитуда, частота и фаза колебаний зависят от времени, причем изменяются хаотически. Так же хаотически изменяется и ориентация плоскости колебан ий. Таким образом, колебания светового вектора в данной точке среды можно описать уравнением:

(9)

Причем , и есть хаотически изменяющиеся во времени функц ии. Такое представление о естественном свете удобно, если рассматриваются промежутки времени, сравнимые с периодом световой волны.

Свет, в котором направления колебаний вектора упорядочены каким – либо образом называют поляризованным.

Если колебания светового вектора происходят только в одной плоскости , проходящей через луч, то свет называется плоско - или линейно поляризованным . Другими словами в плоско поляризованном свете плоскость колебаний имеет строго фиксированное положение. Возможны и другие виды упорядочения, то есть виды поляризации света.

Принцип Гюйгенса

В приближении геометрической оптики свет не должен проникать в область геометрической тени. В действительности свет проникает в эту область, и это явление становится тем существенней, чем меньше размеры преград. Если размеры отверстий или щелей сравнимы с длинной волны, то геометрическая оптика неприменима.

Качественно поведение света за преградой объясняется принципом Гюйгенса, который позволяет построить фронт волны в момент по известному положению в момент .

Согласно принципу Гюйгенса каждая точка, до которой доходит волновое движение, становится точечным источником вторичных волн. Огибающая по фронтам вторичных волн дает положение фронта волны.

Интерференция света

Пусть в некоторой точке среды две волны (плоско поляризованные) возбуждают два колебания одинаковой частоты и одинакового направления :

и . (24.14)

Амплитуда результирующего колебания определяется выражением:

У некогерентных волн изменяется случайно и все значения равновероятны. Поэтому и из (24.15) вытекает:

6 Если же волны когерентные и , то

Но зависит от , – длинны пути от источников волн до данной точки и различно для различных точек среды . Следовательно, при наложении когерентных волн происходит перераспределение светового потока в пространстве, в результате чего в одних точках среды интенсивность света увеличивается, , а в других – уменьшается - . Это явление называется интерференцией.

Отсутствие интерференции в быту при использовании нескольких источников света объясняется их некогерентностью . Отдельные атомы излучают импульсами в течение c и длина цуга ≈ 3метра. У нового цуга не только ориентация плоскости поляризации случайна, но и фаза также непредсказуема.

Реально когерентные волны получают путем разделения излучения одного источника на две части. При наложении частей можно наблюдать интерференцию. Но при этом разносить оптических длин не должна быть порядка длины цуга. Иначе интерференции не будет, т.к. накладываются различные цуги.

Пусть разделение происходит в точке O, а наложение – в точке Р. В P возбуждаются колебания.

и (24.17)

Скорости распространения волн в соответствующих средах.

Разносить фаз в точке Р :

где - длина волны света в вакууме.

Величина , т.е. равная разнице оптических длин путей между рассматриваемыми точками называется оптической разностью хода.

то , в (24.16) равен единице, и интенсивность света в будет максимальной.

(24.20)

то , колебания в точке происходят в противофазе, а значит интенсивность света минимальна.

КОГЕРЕНТНОСТЬ

Когерентность – согласованное протекание двух или нескольких волновых процессов. Абсолютной согласованности никогда не бывает, поэтому можно говорить о различной степени когерентности.

Различают временную и пространственную когерентность.

Временная когерентность

Уравнение реальных волн

Мы рассмотрели интерференцию волн, описываемых уравнениями вида:

(1)

Однако такие волны являются математической абстракцией, поскольку волна, описываемая (1), должна быть бесконечной во времени и пространстве. Только в этом случае величины могут быть определенными константами.

Реальная волна, образующаяся в результате наложения цугов от различных атомов, содержит в себе составляющие, частоты которых лежат в конечном диапазоне частот (соответственно волновые векторы в ), а А и a испытывают непрерывные хаотические изменения. Колебания, возбуждаемые в некоторой точке накладывающимися реальными волнами, можно описать выражением:

и (2)

Причем хаотические изменения функций от времени в (2) являются независимыми.

Для простоты анализа положим амплитуды волн постоянными и одинаковыми (экспериментально это условие реализуется достаточно просто):

Изменения частоты и фазы можно свести к изменениям только частоты или только фазы. Действительно, допустим, негармоничность функций (2) обусловлена скачками фазы. Но, по доказываемой в математике теореме Фурье , любую негармоническую функцию можно представить в виде суммы гармонических составляющих, частоты которых заключены в некоторых . В предельном случае сумма переходит в интеграл: любая конечная и интегрируемая функция может быть представлена интегралом Фурье:

, (3)

где есть амплитуда гармонической составляющей частоты , аналитически определяемая соотношением:

(4)

Итак, негармоническая вследствие изменения фазы функция представима в виде суперпозиции гармонических составляющих с частотами в некотором .

С другой стороны, функцию с переменной частотой и фазой можно свести к функции с переменной только фазой:

Поэтому для укрощения дальнейшего анализа будем считать:

т. е. реализуем фазовый подход к понятию «Временная когерентность».

Полосы равного наклона

Пусть тонкая плоскопараллельная пластинка освещается рассеянным монохроматическим светом. Расположим параллельно пластинке собирающую линзу, в ее фокальной плоскости – экран . В рассеянном свете имеются лучи самых разнообразных направлений. Лучи, падающие под углом , дают по 2 отраженных, которые соберутся в точке . Это справедливо для всех лучей, падающих на поверхность пластинки под данным углом, во всех точках пластинки. Линза обеспечивает сведение всех таких лучей в одну точку, поскольку параллельные лучи, падающие на линзу под определенным углом, собираются ею в одной точке фокальной плоскости, т.е. на экране. В точке О птическая ось линзы пересекает экран. В этой точке собираются лучи, идущие параллельно оптической оси.

Лучи, падающие под углом , но не в плоскости рисунка, а в других плоскостях, соберутся в точках, расположенных на таком же расстоянии от точки , как и точка . В результате интерференции этих лучей на некотором расстоянии от точки образуется окружность с определенной интенсивностью падающего света. Лучи, падающие под другим углом, образуют на экране окружность с другой освещенностью, которая зависит от их оптической разности хода. В результате на экране образуются чередующиеся темные и светлые полосы в форме окружностей. Каждая из окружностей образована лучами, падающими под определенным углом, и они называются полосами равного наклона . Локализованы эти полосы в бесконечности.

Роль линзы может исполнять хрусталик, а экрана – сетчатка глаза. При этом глаз должен быть аккомодирован на бесконечность. В белом свете получаются разноцветные полосы.

Полосы равной толщины

Возьмем пластинку в виде клина. Пусть на нее падает параллельный пучок света . Рассмотрим лучи, отразившиеся от верхней и нижней граней пластинки. Если эти лучи свести линзой в точке , то они будут интерферировать. При небольшом угле между гранями пластинки, разность хода лучей можно вычислять по форму
ле для плоскопараллельной пластинки. Лучи образовавшиеся от падения луча в некоторую другую точку пластинки соберутся линзой в точке . Разность их хода определится толщиной пластинки в соответствующем месте. Можно доказать, что все точки типа Р лежат в одной плоскости, проходящей через вершину клина.

Если расположить экран так, чтобы он был сопряжен с поверхностью, в которой лежат точки P, Р 1 Р 2 то на нем возникнет система светлых и темных полос, каждая из которых образована за счет отражений от пластинки в местах определенной толщины. Поэтому в данном случае полосы называются полосами равной толщины .

При наблюдении в белом свете полосы будут окрашенными. Локализованы полосы равной толщины вблизи поверхности пластинки. При нормальном падении света – на поверхности.

В реальных условиях, при наблюдении окрашивания мыльных и масляных пленок наблюдается полосы смешанного типа.

Дифракция света.

27.1. Дифракция света

Дифракцией называют совокупность явлений, наблюдаемых в среде с резкими оптическими неоднородностями и связанных с отклонениями в распространении света от законов геометрической оптики .

Для наблюдения дифракции на пути световой волны от некоторого источника помещают непрозрачную преграду, закрывающую часть волновой поверхности волны, испущенной источником. Возникающую дифракционную картину наблюдают на экране, расположенном на продолжении лучей.

Различают два вида дифракции. Если лучи, идущие от источника и от преграды в точку наблюдения можно считать почти параллельными, то говорят, что наблюдается дифракция Фраунгофера, или дифракция в параллельных пучках . Если условия дифракции Фраунгофера не выполняются, говорят о дифракции Френеля .

Необходимо отчетливо представлять, что между интерференцией и дифракцией нет принципиального физического отличия. Оба явления обусловлены перераспределением энергии накладывающихся когерентных световых волн. Обычно при рассмотрении конечного числа дискретных источников света, то говорят об интерференции. Если рассматривается наложение волн от непрерывно распределенных в пространстве когерентных источников, то говорят о дифракции.

27.2. Принцип Гюйгенса – Френеля

Принцип Гюйгенса позволяет в принципе объяснит проникновение света в область геометрической тени, однако ничего не говорит об интенсивности волн, распространяющихся в различных направлениях. Френель дополнил принцип Гюйгенса указанием на то как следует рассчитывать интенсивность излучения от элемента волновой поверхности в различных направлениях, а также указанием на то, что вторичные волны являются когерентными, и при расчете интенсивности света в некоторой точке необходимо учитывать интерференцию вторичных волн. .


Самое обсуждаемое
Речевые ошибки политиков примеры Речевые ошибки политиков примеры
Отзыв о книге Отзыв о книге "Робинзон Крузо" Даниэля Дефо: анализ и характеристика Д дефо робинзон крузо анализ произведения
Тест. Снежная королева. Х. Что помогло герде вспомнить о кае Тест. Снежная королева. Х. Что помогло герде вспомнить о кае


top