Энергия разрыва связи. Типы химических связей. энергия связи – это энергия, необходимая для разрыва химической связи. Обменный механизм образования ковалентной связи по методу ВС. Направленность и насыщаемость ковалентной связи

Энергия разрыва связи. Типы химических связей. энергия связи – это энергия, необходимая для разрыва химической связи. Обменный механизм
образования ковалентной связи по методу ВС.
Направленность и насыщаемость ковалентной связи

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ХИМИЧЕСКОЙ СВЯЗИ

Энергия связи – это энергия, необходимая для разрыва химической связи. Энергии разрыва и образовании связи равны по величине но противоположны по знаку. Чем больше энергия химической связи, тем устойчивее молекула. Обычно энергию связи измеряют в кДж/моль.

Для многоатомных соединений с однотипными связями за энергию связи принимается среднее ее значение, рассчитанное делением энергии образования соединения из атомов на число связей. Так, на разрыв связи H–H затрачивается 432,1 кДж/моль, а на разрыв четырех связей в молекуле метана CH 4 – 1648 кДж/∙моль и в этом случае E C–H = 1648: 4 = 412 кДж/моль.

Длина связи – это расстоянию между ядрами взаимодействующих атомов в молекуле. Она зависит от размеров электронных оболочек и степени их перекрывания.

Полярность связи – это распределение электрического заряда между атомами в молекуле.

Если электроотрицательности атомов, участвовавших в образовании связи одинаковы, то связь будет неполярная, а в случае разных электроотрицательностей – полярной. Крайний случай полярной связи, когда общая электронная пара практически полностью смещена к более электроотрицательному элементу, приводит к ионной связи.

Например: Н–Н – неполярная, Н–Сl – полярная и Nа + –Сl - – ионная.

Следует различать полярности отдельных связей и полярность молекулы в целом.

Полярность молекулы – это векторная сумма дипольных моментов всех связей молекулы.

Например:

1) Линейная молекула CO 2 (О=С=О) неполярна –дипольные моменты полярных связей С=О компенсируют друг друга.

2)Молекула воды полярна – дипольные моменты двух связей О-Н не компенсируют друг друга.

Пространственное строение молекул определяется формой и расположением в пространстве электронных облаков.

Порядок связи – это число химических связей между двумя атомами.

Например, порядок связи в молекулах H 2 , O 2 и N 2 равен соответственно 1, 2 и 3, поскольку связь в этих случаях образуется за счёт перекрывания одной, двух и трех пар электронных облаков.

4.1. Ковалентная связь – это связь между двумя атомами посредством общей электронной пары.

Количество химических связей определяется валентностями элементов.

Валентность элемента – число орбиталей, принимающих участие в образовании связей.

Ковалентная неполярная связь - эта связь, осуществляемая за счет образования электронных пар между атомами с равной электроотрицательностью. Например, Н 2 , О 2 , N 2 , Cl 2 и т. д.

Ковалентная полярная связь – эта связь между атомами с различной электроотрицательностью.

Например, НCl, H 2 S, PH 3 и т.д.

Ковалентная связь обладает свойствами:


1) Насыщаемости – способностью атома образовывать столько связей, сколько у него имеется валентностей.

2) Направленности – перекрытие электронных облаков происходит в направлении обеспечивающем максимальную плотность перекрытия.

4.2. Ионная связь – это связь между противоположно заряженными ионами.

Это крайний случай ковалентной полярной связи и возникает при большой разнице в электроотрицательностях взаимодействующих атомов. Иoннaя связь не обладает направленностью и насыщаемостью.

Степень окисления – это условный заряд атома в соединении исходя из предположения, что происходит полная ионизация связей.


В большинстве случаев при образовании связи происходит обобществление электронов связываемых атомов. Такой тип химической связи называют ковалентной связью (приставка "ко-" в латинском языке означает совместность, "валенс" - имеющий силу). Связывающие электроны находятся преимущественно в пространстве между связываемыми атомами. За счет притяжения ядер атомов к этим электронам образуется химическая связь. Таким образом, ковалентная связь - это химическая связь, возникающая за счет увеличения электронной плотности в области между химически связанными атомами.

Первая теория ковалентной связи принадлежит американскому физикохимику Г.-Н. Льюису . В 1916 г. он предположил, что связи между двумя атомами осуществляется парой электронов, при этом вокруг каждого атома обычно формируется восьмиэлектронная оболочка (правило октета).

Одно из существенных свойств ковалентной связи - ее насыщаемость. При ограниченном числе внешних электронов в областях между ядрами образуется ограниченное число электронных пар вблизи каждого атома (и, следовательно, число химических связей). Именно это число тесно связано с понятием валентности атома в молекуле (валентностью называют общее число ковалентных связей, образуемых атомом). Другое важное свойство ковалентной связи - ее направленность в пространстве. Это проявляется в примерно одинаковом геометрическом строении близких по составу химических частиц. Особенностью ковалентной связи является также ее поляризуемость.

Для описания ковалентной связи используют преимущественно два метода, основанных на разных приближениях при решении уравнения Шредингера: метод молекулярных орбиталей и метод валентных связей. В настоящее время в теоретической химии используется почти исключительно метод молекулярных орбиталей. Однако метод валентных связей, несмотря на большую сложность вычислений, дает более наглядное представление об образовании и строении химических частиц.

Параметры ковалентной связи

Совокупность атомов, образующих химическую частицу, существенно отличается от совокупности свободных атомов. Образование химической связи приводит, в частности, к изменению радиусов атомов и их энергии. Происходит также перераспределение электронной плотности: повышается вероятность нахождения электронов в пространстве между связываемыми атомами.

Длина химической связи

При образовании химической связи всегда происходит сближение атомов - расстояние между ними меньше, чем сумма радиусов изолированных атомов:

r (A−B) r(A) + r (B)

Радиус атома водорода составляет 53 пм, атома фтора − 71 пм, а расстояние между ядрами атомов в молекуле HF равно 92 пм:

Межъядерное расстояние между химически связанными атомами называется длиной химической связи.

Во многих случаях длину связи между атомами в молекуле вещества можно предсказать, зная расстояния между этими атомами в других химических веществах. Длина связи между атомами углерода в алмазе равна 154 пм, между атомами галогена в молекуле хлора - 199 пм. Полусумма расстояний между атомами углерода и хлора, рассчитанная из этих данных, составляет 177 пм, что совпадает с экспериментально измеренной длиной связи в молекуле CCl 4 . В то же время это выполняется не всегда. Например, расстояние между атомами водорода и брома в двухатомных молекулах составляет 74 и 228 пм, соответственно. Среднее арифметическое этих чисел составляет 151 пм, однако реальное расстояние между атомами в молекуле бромоводорода равно 141 пм, то есть заметно меньше.

Расстояние между атомами существенно уменьшается при образовании кратных связей. Чем выше кратность связи, тем короче межатомное расстояние .

Длины некоторых простых и кратных связей

Валентные углы

Направление ковалентных связей характеризуется валентными углами - углами между линиями, соединяющими связываемые атомы. Графическая формула химической частицы не несет информации о валентных углах. Например, в сульфат-ионе SO 4 2− валентные углы между связями сера−кислород равны 109,5 o , а в тетрахлоропалладат-ионе 2− − 90 o . Совокупность длин связей и валентных углов в химической частице определяет ее пространственное строение. Для определения валентных углов используют экспериментальные методы изучения структуры химических соединений. Оценить значения валентных углов можно теоретически, исходя из электронного строения химической частицы.

Энергия ковалентной связи

Химическое соединение образуется из отдельных атомов только в том случае, если это энергетически выгодно. Если силы притяжения преобладают над силами отталкивания, потенциальная энергия взаимодействующих атомов понижается, в противном случае − повышается. На некотором расстоянии (равном длине связи r 0) эта энергия минимальна.


Таким образом, при образовании химической связи энергия выделяется, при ее разрыве − поглощается. Энергия E 0 , необходимая для того, чтобы разъединить атомы и удалить их друг от друга на расстояние, на котором они не взаимодействуют, называется энергией связи . Для двухатомных молекул энергия связи определяется как энергия диссоциации молекулы на атомы. Она может быть измерена экспериментально.

В молекуле водорода энергия связи численно равна энергии, которая выделяется при образовании молекулы Н 2 из атомов Н:

Н + Н = Н 2 + 432 кДж

Эту же энергию нужно затратить, чтобы разорвать связь Н-Н:

H 2 = H + H − 432 кДж

Для многоатомных молекул эта величина является условной и отвечает энергии такого процесса, при котором данная химическая связь исчезает, а все остальные остаются без изменения. При наличии нескольких одинаковых связей (например, для молекулы воды, содержащей две связи кислород−водород) их энергию можно рассчитать, используя закон Гесса . Величины энергии распада воды на простые вещества, а также энергии диссоциации водорода и кислорода на атомы известны:

2Н 2 О = 2Н 2 + О 2 ; 484 кДж/моль

Н 2 = 2Н; 432 кДж/моль

О 2 = 2О; 494 кДж/моль

Учитывая, что в двух молекулах воды содержится 4 связи, энергия связи кислород-водород равна:

Е (О−Н) = (2 . 432 + 494 + 484) / 4 = 460,5 кДж/моль

В молекулах состава AB n последовательный отрыв атомов В сопровождается определенными (не всегда одинаковыми) затратами энергии. Например, значения энергии (кДж/моль) последовательного отщепления атомов водорода от молекулы метана существенно различаются:

427 368 519 335
СН 4 СН 3 СН 2 СН С

При этом энергия связи А−В определяется как средняя величина затраченной энергии на всех стадиях:

СН 4 = С + 4Н; 1649 кДж/моль

Е (С−Н) = 1649 / 4 = 412 кДж/моль

Чем выше энергия химической связи, тем прочнее связь . Связь считается прочной, или сильной, если ее энергия превышает 500 кДж/моль (например, 942 кДж/моль для N 2), слабой - если ее энергия меньше 100 кДж/моль (например, 69 кДж/моль для NO 2). Если при взаимодействии атомов выделяется энергия менее 15 кДж/моль, то считают, что химическая связь не образуется, а наблюдается межмолекулярное взаимодействие (например, 2 кДж/моль для Xe 2). Прочность связи обычно уменьшается с увеличением ее длины.

Одинарная связь всегда слабее, чем кратные связи - двойная и тройная - между теми же атомами.

Энергии некоторых простых и кратных связей

Полярность ковалентной связи

Полярность химической связи зависит от разности электроотрицательностей связываемых атомов.

Электроотрицательность − условная величина, характеризующая способность атома в молекуле притягивать электроны. Если в двухатомной молекуле А−В образующие связь электроны притягиваются к атому В сильнее, чем к атому А, то атом В считается более электроотрицательным.

Шкала электроотрицательности была использована Л. Полингом для количественной характеристики способности атомов к поляризации ковалентных связей. Для количественного описания электроотрицательности, помимо термохимических данных, используют также данные о геометрии молекул (метод Сандерсона) или спектральные характеристики (метод Горди). Широко используют также шкалу Олреда и Рохова, в которой при расчете используют эффективный заряд ядра и атомный ковалентный радиус. Наиболее ясный физический смысл имеет метод, предложенный американским физикохимиком Р. Малликеном (1896-1986). Он определил электроотрицательность атома как полусумму его сродства к электрону и потенциала ионизации. Значения электроотрицательности, базирующиеся на методе Малликена и распространенные на широкий круг разнообразных объектов, называют абсолютными.

Самое высокое значение электроотрицательности имеет фтор. Наименее электроотрицательный элемент - цезий. Чем выше значение разности электроотрицательностей двух атомов, тем более полярной является химическая связь между ними.

В зависимости от того, как происходит перераспределение электронной плотности при образовании химической связи, различают несколько ее типов. Предельный случай поляризации химической связи - полный переход электрона от одного атома к другому. При этом образуются два иона, между которыми возникает ионная связь. Для того чтобы два атома смогли создать ионную связь, необходимо, чтобы их электроотрицательности очень сильно различались. Если электроотрицательности атомов равны (при образовании молекул из одинаковых атомов), связь называют неполярной ковалентной . Чаще всего встречается полярная ковалентная связь - она образуется между любыми атомами, имеющими разные значения электроотрицательности.

Количественной оценкой полярности ("ионности") связи могут служить эффективные заряды атомов. Эффективный заряд атома характеризует разность между числом электронов, принадлежащих данному атому в химическом соединении, и числом электронов свободного атома. Атом более электроотрицательного элемента притягивает электроны сильнее. Поэтому электроны оказываются ближе к нему, и он получает некоторый отрицательный заряд, который называют и эффективным, а у его партнера появляется такой же положительный заряд. Если электроны, образующие связь между атомами, принадлежат им в равной степени, эффективные заряды равны нулю. В ионных соединениях эффективные заряды должны совпадать с зарядами ионов. А для всех других частиц они имеют промежуточные значения.

Лучший метод оценки зарядов атомов в молекуле - решение волнового уравнения. Однако это возможно лишь при наличии малого числа атомов. Качественно распределение заряда можно оценить по шкале электроотрицательности. Используют также различные экспериментальные методы. Для двухатомных молекул охарактеризовать полярность связи и определить эффективные заряды атомов можно на основе измерения дипольного момента:

μ = q r ,

где q − заряд полюса диполя, равный для двухатомной молекулы эффективному заряду, r − межъядерное расстояние.

Дипольный момент связи является векторной величиной. Он направлен от положительно заряженной части молекулы к ее отрицательной части. На основании измерения дипольного момента было установлено, что в молекуле хлороводорода HCl на атоме водорода имеется положительный заряд +0,2 доли заряда электрона, а на атоме хлора отрицательный заряд −0,2. Значит, связь H−Cl на 20% имеет ионный характер. А связь Na−Cl является ионной на 90%.

В которой происходит разрыв одного моля данной связи. При этом принимается, что исходное вещество и продукты реакции находятся в своих стандартных состояниях гипотетического идеального газа при давлении 1 атм и температуре 25 0 C . Синонимами энергии разрыва химической связи считаются: энергия связи, энергия диссоциации двухатомных молекул , энергия образования химической связи .

Энергия разрыва химической связи может быть определена разными способами, например

Из масс-спектроскопических данных (масс-спектрометрия).

Энергия разрыва химических связей в различных соединениях отражены в справочнике.

Энергия разрыва химических связей характеризует прочность химической связи.

Соединение Соединение Энергия разрыва связи, ккал/моль
H-H 104,2 CH 3 -H 104
HO-H 119 CH 3 CH 2 -H 98
CH 3 O-H 102 (CH 3) 2 CH-H 94,5
C 6 H 5 O-H 85 (CH 3) 3 C-H 91
F-H 135,8 C 6 H 5 -H 103
Cl-H 103,0 CH 2 =CH-H 103
Br-H 87,5 HC≡C-H 125
I-H 71,3 H 2 N-H 103

Энергия разрыва связи С-С.

См. также

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Энергия разрыва химической связи" в других словарях:

    Равна работе, которую необходимо затратить, чтобы разделить молекулу на две части (атомы, группы атомов) и удалить их друг от друга на бесконечное расстояние. Например, если рассматривается Э. х. с. H3C H в молекуле метана, то такими… … Большая советская энциклопедия

    Экзотермическая реакция химическая реакция, сопровождающаяся выделением теплоты. Противоположна эндотермической реакции. Полное количество энергии в химической системе чрезвычайно трудно измерить или подсчитать … Википедия

    Рис.1.Тройная связь в рамках теории валентных связей Тройная связь ковалентная связь двух атомов в молекуле посредством трёх общих связывающих электронных пар. Первая картина наглядного строения тройной связи была дана в … Википедия

    Отличительная особенность спиртов гидроксильная группа при насыщенном атоме углерода на рисунке выделена красным (кислород) и серым цветом (водород). Спирты (от лат. … Википедия

    С (carboneum), неметаллический химический элемент IVA подгруппы (C, Si, Ge, Sn, Pb) периодической системы элементов. Встречается в природе в виде кристаллов алмаза (рис. 1), графита или фуллерена и других форм и входит в состав органических… … Энциклопедия Кольера

Билет №10.
1.Характеристики химической связи – энергия, длина, кратность, полярность.
Причина образования химической связи.

Химическая связь – совокупность взаимодействий атомов, приводящая к образованию устойчивых систем (молекул, комплексов, кристаллов.). Она возникает, если в результате перекрывания е облаков атомов происходит уменьшение полной энергии системы. Мерой прочности служит энергия связи, которая определяется работой, нужной для разрушения данной связи.
Виды хим. связи: ковалентная (полярная, неполярная, обменная и донорно-акцепторная), ионная, водородная и металлическая.
Длина связи – расстояние между центрами атомов в молекуле. Энергия и длина связей зависят от характера распределения Эл. плотности между атомами. На распределение е плотности влияет пространственная направленность хим. связи. Если 2-х атомные молекулы всегда линейны, то формы многоатомных молекул м.б. различны.
Угол между воображаемыми линиями, которые можно провести через центры связанных атомов называется валентным. Распределение е плотности так же зависит от размеров ат. и их эо. В гомоатомных Эл. плотность распределена равномерно. В гетероатомных смещена в том направлении, которое способствует уменьшению энергии системы.
Энергия связи – это энергия, которая выделяется при образовании молекулы из одиночных атомов. Энергия связи отличается от ΔHобр. Теплота образования – это энергия, которая выделяется или поглощается при образовании молекул из простых веществ. Так:

N2 + O2 → 2NO + 677,8 кДж/моль – ∆Hобр.

N + O → NO - 89,96 кДж/моль – Е св.

Кратность связи определяется количеством электронных пар, участвующих в связи между атомами. Химическая связь обусловлена перекрыванием электронных облаков. Если это перекрывание происходит вдоль линии, соединяющей ядра атомов, то такая связь называется σ-связью. Она может быть образована за счет s – s электронов, р – р электронов, s – р электронов. Химическая связь, осуществляемая одной электронной парой, называется одинарной.
Если связь образуется более чем одной парой электронов, то она называется кратной.
Кратная связь образуется в тех случаях, когда имеется слишком мало электронов и связывающихся атомов, чтобы каждая пригодная для образования связи валентная орбиталь центрального атома могла перекрыться с какой-либо орбиталью окружающего атома.
Поскольку р-орбитали строго ориентированы в пространстве, то они могут перекрываться только в том случае, если перпендикулярные межъядерной оси р-орбитали каждого атома будут параллельны друг другу. Это означает, что в молекулах с кратной связью отсутствует вращение вокруг связи.

Если двухатомная молекула состоит из атомов одного элемента, как, например, молекулы Н2, N2, Cl2 и т. п., то каждое электронное облако, образованное общей парой электронов и осуществляющее ковалентную связь, распределяется в пространстве симметрично относительно ядер обоих атомов. В подобном случае ковалентная связь называется неполярной или гомеополярной. Если же двухатомная молекула состоит из атомов различных элементов, то общее электронное облако смещено в сторону одного из атомов, так что возникает асимметрия в распределении заряда. В таких случаях ковалентная связь называется полярной или гетерополярной.

Для оценки способности атома данного элемента оттягивать к себе общую электронную пару пользуются величиной относительной электроотрицательности. Чем больше электроотрицательность атома, тем сильнее притягивает он общую электронную пару. Иначе говоря, при образовании ковалентной связи между двумя атомами разных элементов общее электронное облако смещается к более электроотрицательному атому, и в тем большей степени, чем больше различаются электроотрицательности взаимодействующих атомов. Значения электроотрицательности атомов некоторых элементов по отношению к электроотрицательности фтора, которая принята равной 4.
Электроотрицательность закономерно изменяется в зависимости от положения элемента в периодической системе. В начале каждого периода находятся элементы с наиболее низкой электроотрицательностью - типичные металлы, в конце периода (перед благородными газами) - элементы с наивысшей электроотрицательностью, т. е. типичные неметаллы.

У элементов одной и той же подгруппы электроотрицательность с ростом заряда ядра проявляет тенденцию к уменьшению. Таким образом, чем более типичным металлом является элемент, тем ниже его электроотрицательность; чем более типичным неметаллом является элемент, тем выше его электроотрицательность.

Причина образования химической связи. Атомы большинства химических элементов в индивидуальном виде не существует, так как взаимодействуют между собой, образуя сложные частицы (молекулы, ионы и радикалы). Между атомами действуют электоростатические силы, т.е. сила взаимодействия электрических зарядов, носителями которых являются электроны и ядра атомов. В образовании химической связи между атомами главную роль играют валентные электроны.
Причины образования химической связи между атомами можно искать в электростатической природе самого атома. Благодаря наличию в атомах пространственно разделенных областей, обладающих электрическим зарядом, между различными атомами могут возникать электростатические взаимодействия, способные удерживать эти атомы вместе.
При образовании химической связи происходит перераспределение в пространстве электронных плотностей, исходно относившихся к различным атомам. Поскольку наименее прочно связаны с ядром электроны внешнего уровня, то в образовании химической связи именно этим электронам принадлежит главная роль. Количество химических связей, образованных данным атомом в соединении, называют валентностью. По этой причине электроны внешнего уровня называют валентными электронами.

2.Характеристики химической связи - энергия, длина, кратность, полярность.

Энергия связи – это энергия, которая выделяется при образовании молекулы из одиночных атомов. Энергия связи отличается от ΔHобр. Теплота образования – это энергия, которая выделяется или поглощается при образовании молекул из простых веществ.(Энергии связей в молекулах, состоящих из одинаковых атомов, уменьшаются по группам сверху вниз)

Для двухатомных молекул энергия связей равна энергии диссоциации, взятой с обратным знаком: например в молекуле F2 энергия связи между атомами F-F равна - 150,6 кДж/моль. Для многоатомных молекул с одним типом связи, например, для молекул АВn, средняя энергия связи равна 1/n части полной энергии образования соединения из атомов. Так, энергия образования СН4 = -1661,1 кДж/моль.

Если в молекуле соединяются более двух различных атомов, то средняя энергия связи не совпадает с величиной энергии диссоциации молекулы. Если в молекуле представлены различные типы связи, то каждому из них можно приближенно приписать определенное значение Е. Это позволяет оценить энергию образования молекулы из атомов. Например, энергию образования молекулы пентана из атомов углерода и водорода можно вычислить по уравнению:

Е = 4EC-C + 12EC-H.

Длина связи – это расстояние между ядрами взаимодействующих атомов. Ориентировочно оценить длину связи можно, исходя из атомных или ионных радиусов, или из результатов определения размеров молекул с помощью числа Авогадро. Так, объем, приходящийся на одну молекулу воды: , о

Чем выше порядок связи между атомами, тем она короче.

Кратность: Кратность связи определяется количеством электронных пар, участвующих в связи между атомами. Химическая связь обусловлена перекрыванием электронных облаков. Если это перекрывание происходит вдоль линии, соединяющей ядра атомов, то такая связь называется σ-связью. Она может быть образована за счет s – s электронов, р – р электронов, s – р электронов. Химическая связь, осуществляемая одной электронной парой, называется одинарной.

Если связь образуется более чем одной парой электронов, то она называется кратной.

Кратная связь образуется в тех случаях, когда имеется слишком мало электронов и связывающихся атомов, чтобы каждая пригодная для образования связи валентная орбиталь центрального атома могла перекрыться с какой-либо орбиталью окружающего атома.

Поскольку р-орбитали строго ориентированы в пространстве, то они могут перекрываться только в том случае, если перпендикулярные межъядерной оси р-орбитали каждого атома будут параллельны друг другу. Это означает, что в молекулах с кратной связью отсутствует вращение вокруг связи.

Полярность: Если двухатомная молекула состоит из атомов одного элемента, как, например, молекулы Н2, N2, Cl2 и т. п., то каждое электронное облако, образованное общей парой электронов и осуществляющее ковалентную связь, распределяется в пространстве симметрично относительно ядер обоих атомов. В подобном случае ковалентная связь называется неполярной или гомеополярной. Если же двухатомная молекула состоит из атомов различных элементов, то общее электронное облако смещено в сторону одного из атомов, так что возникает асимметрия в распределении заряда. В таких случаях ковалентная связь называется полярной или гетерополярной.

Для оценки способности атома данного элемента оттягивать к себе общую электронную пару пользуются величиной относительной электроотрицательности. Чем больше электроотрицательность атома, тем сильнее притягивает он общую электронную пару. Иначе говоря, при образовании ковалентной связи между двумя атомами разных элементов общее электронное облако смещается к более электроотрицательному атому, и в тем большей степени, чем больше различаются электроотрицательности взаимодействующих атомов.

Смещение общего электронного облака при образовании полярной ковалентной связи приводит к тому, что средняя плотность отрицательного электрического заряда оказывается выше вблизи более электроотрицательного атома и ниже - вблизи менее электроотрицательного. В результате первый атом приобретает избыточный отрицательный, а второй - избыточный положительный заряд; эти заряды принято называть эффективными зарядами атомов в молекуле.

3.Причина образования химической связи - является стремление атомов металлов и неметаллов путём взаимодействия с другими атомами достичь более устойчивой электронной структуры, подобной структуре инертных газов. Различают три основных вида связи: ковалентную полярную, ковалентную неполярную и ионную.

Ковалентная связь называется неполярной, если общая электронная пара в равной степени принадлежит обоим атомам. Ковалентная неполярная связь возникает между атомами, электроотрицательности которых одинаковы (между атомами одного и того же неметалла),т.е. в простых веществах. Например, в молекулах кислорода, азота, хлора, брома связь ковалентная неполярная.
Ковалентная связь называется полярной, если общая электронная пара смещена к одному из элементов. Ковалентная полярная связь возникает между атомами, электроотрицательности которых отличаются, но не сильно, т.е. в сложных веществах между атомами неметаллов. Например, в молекулах воды, хлороводорода, аммиака, серной кислоты связь ковалентная полярная.
​Ионная связь – это связь между ионами, осуществляется за счёт притяжения разноимённо заряженных ионов. Ионная связь возникает между атомами типичных металлов (главная подгруппа первой и второй группы) и атомами типичных неметаллов (главная подгруппа седьмой группы и кислород).
4. Химическое равновесие. Константа равновесия. Расчёт равновесных концентраций.
Химическое равновесие - состояние химической системы, в котором обратимо протекает одна или несколько химических реакций, причём скорости в каждой паре прямая-обратная реакция равны между собой. Для системы, находящейся в химическом равновесии, концентрации реагентов, температура и другие параметры системы не изменяются со временем.

А2 + В2 ⇄ 2AB

В состоянии равновесия скорости прямой и обратной реакции становятся равными.

Конста́нта равнове́сия - величина, определяющая для данной химической реакции соотношение между исходных веществ и продуктов в состоянии химического равновесия. Зная константу равновесия реакции, можно рассчитать равновесный состав реагирующей смеси, предельный выход продуктов, определить направление протекания реакции.

Способы выражения константы равновесия:
Для реакции в смеси идеальных газов константа равновесия может быть выражена через равновесные парциальные давления компонентов pi по формуле:

где νi - стехиометрический коэффициент (для исходных веществ принимается отрицательным, для продуктов - положительным). Kp не зависит от общего давления, от исходных количеств веществ или от того, какие участники реакции были взяты в качестве исходных, но зависит от температуры.

Например, для реакции окисления монооксида углерода:
2CO + O2 = 2CO2

Константа равновесия может быть рассчитана по уравнению:

Если реакция протекает в идеальном растворе и концентрация компонентов выражена через молярность ci, константа равновесия принимает вид:

Для реакций в смеси реальных газов или в реальном растворе вместо парциального давления и концентрации используют соответственно фугитивность fi и активность ai:

В некоторых случаях (в зависимости от способа выражения) константа равновесия может являться функцией не только температуры, но и давления. Так, для реакции в смеси идеальных газов парциальное давление компонента может быть выражено по закону Дальтона через суммарное давление и мольную долю компонента (), тогда легко показать, что:

где Δn - изменение числа молей веществ в ходе реакции. Видно, что Kx зависит от давления. Если число молей продуктов реакции равно числу молей исходных веществ (Δn = 0), то Kp = Kx.

Энергия химической связи

равна работе, которую необходимо затратить, чтобы разделить молекулу на две части (атомы, группы атомов) и удалить их друг от друга на бесконечное расстояние. Например, если рассматривается Э. х. с. H 3 C-H в молекуле метана, то такими частицами являются метильная группа CH 3 и атом водорода Н, если рассматривается Э. х. с. Н-Н в молекуле водорода, такими частицами являются атомы водорода. Э. х. с. - частный случай энергии связи (См. Энергия связи), обычно ее выражают в кдж/моль (ккал/моль ); в зависимости от частиц, образующих химическую связь (См. Химическая связь), характера взаимодействия между ними (Ковалентная связь , Водородная связь и другие виды химической связи), кратности связи (например, двойные, тройные связи) Э. х. с. имеет величину от 8-10 до 1000 кдж/моль. Для молекулы, содержащей две (или более) одинаковых связей, различают Э. х. с. каждой связи (энергию разрыва связи) и среднюю энергию связи, равную усредненной величине энергии разрыва этих связей. Так, энергия разрыва связи HO-H в молекуле воды, т. е. Тепловой эффект реакции H 2 O = HO + H равен 495 кдж/моль, энергия разрыва связи Н-О в гидроксильной группе - 435 кдж/моль, средняя же Э. х. с. равна 465 кдж/моль. Различие между величинами энергий разрыва и средней Э. х. с. обусловлено тем, что при частичной диссоциации (См. Диссоциация) молекулы (разрыве одной связи) изменяется электронная конфигурация и взаимное расположение оставшихся в молекуле атомов, в результате чего изменяется их энергия взаимодействия. Величина Э. х. с. зависит от начальной энергии молекулы, об этом факте иногда говорят как о зависимости Э. х. с. от температуры. Обычно Э. х. с. рассматривают для случаев, когда молекулы находятся в стандартном состоянии (См. Стандартные состояния) или при 0 К. Именно эти значения Э. х. с. приводятся обычно в справочниках. Э. х. с. - важная характеристика, определяющая реакционную способность (См. Реакционная способность) вещества и использующаяся при термодинамических и кинетических расчетах реакций химических (См. Реакции химические). Э. х. с. может быть косвенно определена по данным калориметрических измерений (см. Термохимия), расчетным способом (см. Квантовая химия), а также с помощью масс-спектроскопии (См. Масс-спектроскопия) и спектрального анализа (См. Спектральный анализ).


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Энергия химической связи" в других словарях:

    Для двухат. молекул энергия удаления атомов на бесконечно большое расстояние друг от друга; для многоат. молекул, радикалов, ионов энергия диссоциации. Суммарная энергия удаления всех атомов многоат. молекулы друг от друга на бесконечно большое… … Физическая энциклопедия

    энергия химической связи - энергия, равная работе, которую необходимо затратить, чтобы разделить молекулу на две части (атомы, группы атомов), удаленные на бесконечно большое расстояние. Энергия химической связи частный случай энергия связи, обычно ее… …

    энергия химической связи - cheminio ryšio energija statusas T sritis Standartizacija ir metrologija apibrėžtis Energija, kurios reikia 1 molio medžiagos vieno tipo cheminiams ryšiams suardyti. atitikmenys: angl. chemical bond energy vok. chemische Bindungsenergie, f rus.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    энергия химической связи - cheminio ryšio energija statusas T sritis chemija apibrėžtis Energija, kurios reikia 1 molio medžiagos vieno tipo cheminiams ryšiams suardyti. atitikmenys: angl. chemical bond energy rus. энергия химической связи … Chemijos terminų aiškinamasis žodynas

    энергия химической связи - cheminio ryšio energija statusas T sritis fizika atitikmenys: angl. chemical bond energy vok. chemische Bindungsenergie, f rus. энергия химической связи, f pranc. énergie de liaison chimique, f … Fizikos terminų žodynas

    Стандартной энергией разрыва химической связи называют изменение энтальпии при химической реакции, в которой происходит разрыв одного моля данной связи. При этом принимается, что исходное вещество и продукты реакции находятся в своих стандартных… … Википедия

    Энергия связ. системы к. л. ч ц (напр., атома как системы из ядра и эл нов), равная работе, к рую необходимо затратить, чтобы разделить эту систему на составляющие её ч цы и удалить их друг от друга на такое расстояние, на к ром их вз ствием… … Физическая энциклопедия

    энергия активации - разность между средней энергией частиц (молекул, радикалов, ионов и др.), вступающих в элементарный акт химической реакции, и средней энергией всех частиц реагирующей системы. Энергия активации разных химических реакций… … Энциклопедический словарь по металлургии

    энергия связи - энергия связующей системы каких либо частиц (например, атома), равная работе, которую необходимо затратить, чтобы разложить эту систему на бесконечно удаленные и не взаимодействующие между собой составляющие ее… … Энциклопедический словарь по металлургии

    энергия кристаллической решетки - энергия, равная работе, которую необходимо затратить, чтобы разделить и отделить на бесконечное расстояние частицы, образующие кристаллическую решетку. Энергия кристаллической решетки в значительной степени определяет прочность… … Энциклопедический словарь по металлургии


Самое обсуждаемое
Изомерия органических соединений Органические вещества у которых нет структурных изомеров Изомерия органических соединений Органические вещества у которых нет структурных изомеров
Критическая масса в ядерной физике Критическая масса урана в ядерном реакторе Критическая масса в ядерной физике Критическая масса урана в ядерном реакторе
Социальная сфера: медицина и образование Социальная сфера: медицина и образование


top