Кубическая ячейка. Кристаллическая структура металлов. Молекулярная связь кристаллических решеток

Кубическая ячейка. Кристаллическая структура металлов. Молекулярная связь кристаллических решеток

Кристалл с определенной химической формулой имеет присущую ему кристаллическую структуру.
Кристаллические структуры - это структуры, представляющие периодическую решетку, в узлах которой расположены атомы. Трехмерная кристаллическая структура представляет решетку, построенную на трех координатных осях x, y, z, расположенных в общем случае под углами a, b, g . Периоды трансляции атомов по осям (параметры решетки) равны, соответственно, a, b, c. Элементарная ячейка кристалла - это параллелепипед, построенный на векторах трансляции a, b, c. Такая ячейка называется примитивной.
В результате трансляции элементарной ячейки в пространстве получается пространственная простая решетка - так называемая решетка Браве. Существует четырнадцать типов решеток Браве. Эти решетки отличаются друг от друга видом элементарных ячеек.

Решетки Браве подразделяются на семь систем, называемых кристаллографическими сингониями, в соответствии с семью различными типами элементарных ячеек: триклинной, моноклинной, ромбической, тетрагональной, тригональной, кубической и гексагональной. Эти элементарные ячейки могут быть как примитивными, так и сложными.
На рисунке изображены сложные элементарные ячейки.

а)объемноцентрированная б)гранецентрированная
в) базоцентрированная г) гексагональная

Объемноцентрированная (ОЦ) ячейка (рис. а) - содержит дополнительно один атом на пересечении пространственных диагоналей куба (или, в общем случае, параллелепипеда). В ОЦ кубической структуре (ОЦК) кристаллизуются такие металлы, как 23 V, 24 Cr, 26 Fe, 41 Nb, 73 Ta, 74 W (индекс слева внизу обозначает номер элемента в периодической системе элементов Д. И. Менделеева ).
Гранецентрированная (ГЦ) ячейка (рис. б) - содержит дополнительно по одному атому в плоскости каждой грани. В ГЦ кубической структуре (ГЦК) кристаллизуются металлы 13 Al, 28 Ni, 29 Cu, 47 Ag, 78 Pt, 79 Au и др.
Базоцентрированная (БЦ) ячейка (рис. в) - содержит дополнительно по одному атому в центрах противоположных граней.
Гексагональная ячейка (рис. г) состоит из трех примитивных ячеек, и, как и БЦ ячейка, содержит по одному атому в центре противоположных граней. В гексагональной структуре кристаллизуются многие металлы - 22 Ti, 27 Co, 30 Zn, 39 Y, 40 Zr, 64 Gd, 71 Lu.
Различные кристаллографические систем отличаются друг от друга формой элементарной ячейки: соотношениями между длинами ребер a, b и c и углами α, β и γ между гранями.
В триклинной системе (где нет осей и плоскостей симметрии) такая ячейка представляет собой параллелепипед, все ребра и углы которого не равны между собой. В моноклинной - это наклонный параллелепипед; в ромбической (или орторомбической) - прямоугольный параллелепипед с неравными ребрами, в тетрагональной - прямоугольный параллелепипед, в основании которого лежит квадрат; в тригональной (ромбоэдрической) - прямоугольный ромбоэдр, стороны которого равны, а углы одинаковы, но отличны от 90 о и меньше, чем 120 о; в гексагональной - прямую призму, основанием которой является ромб с углами 120 о и 60 о, а три ячейки составляют шестигранную призму; в кубической системе элементарная ячейка представляет собой куб.

В настоящее время выделено уже более тысячи структурных типов, однако они охватывают лишь несколько процентов известных кристаллических структур.
В международной классификации по группам структур принята следующая классификация:
А - элементы;
В - соединения типа АВ (например, NaCl, CsI);
С - соединения типа AB 2 (CaF 2 , TiO 2);
D - соединения типа A n B m (Al 2 O 3);
E - соединения, образованные больше, чем двумя сортами атомов без радикалов или комплексных ионов (например, CuFeS);
F -структуры соединений с двух- или трехатомными ионами (KCNS, NaHF 2);
G - соединения с четырехатомными ионами (CaCO 3 , NaClO 3);
H - соединения с пятиатомными ионами (CaSО 4 .2H 2 O, CaWO 4);
L - сплавы;
S -силикаты.
Разновидности типов внутри группы различаются номерами.

Понятие структурный тип - один из критериев сходства или различия строения кристаллов. Обычно структурный тип относят к названию одного из веществ, кристаллизующихся в нём. Структуры кристаллов, принадлежащих к одному структурному типу, одинаковы до подобия. Структурный тип в кристаллографии определяет относительное расположение частиц (атомов или атомных групп) в кристалле, без указаний абсолютных расстояний между ними. Чтобы описать конкретную структуру, надо указать структурный тип и параметры структуры.
К важнейшим и распространенным структурным типам относятся: структура меди (тип А ), структура вольфрама (тип А 2 ), структура магния (тип А 3 ), структура алмаза (тип А 4 ), структура графита (тип А 9 ), структура каменной соли (тип В 1 ), структура перовскита (тип Е 2 ), структура шпинели (тип Н 11 ).

Тип А (Структура меди)
В структурном типе меди кристаллизуются очень многие металлы: золото, серебро, никель, алюминий, кальций, торий, свинец и др. Все эти металлы сравнительно мягкие, пластичные, легко обрабатываются. Многие из них образуют непрерывные ряды твердых растворов, например, Ag-Au, Cu-Au. Структурой типа меди обладают также интерметаллические соединения AuSb, Au 2 Bi, Au 2 Pb, Cu 2 Mg, Bi 2 K, ZrH, TiH и др.
Элементарная ячейка меди - кубическая, гранецентрированная. Атомы располагаются в вершинах и центрах граней F -ячейки. На элементарную ячейку приходится 4 атома. Каждый атом окружен 12 ближайшими атомами, координационное число (к.ч.) =12. Координационный многогранник - кубооктаэдр. В структуре имеется одна правильная система точек с кратностью 4. Плотнейшие слои 1 перпендикулярны направлениям. Плотнейшая упаковка кубическая трехслойная....АВСАВС....Пространственная группа Fm3m.

Тип А 2 (Структура вольфрама)
К структурному типу вольфрама (тип ОЦК-металлов) относятся тугоплавкие металлы: хром, ванадий, молибден, ниобий, тантал, -кобальт, -железо, титан, цирконий, гафний, щелочные элементы - литий, натрий, калий, рубидий, цезий, щелочноземельные - кальций, стронций, барий, актиниды - уран, нептуний, плутоний. Из интерметаллических соединений в ОЦК-структуре кристаллизуются AgZn, Cu 3 Al, CoAl, Cu 5 Sn, LiAg, LiAl, TaH и др.
В объемно-центрированной кубической ячейке вольфрама атомы располагаются по вершинам и в центре ячейки, т.е. на одну ячейку приходится два атома. ОЦК-структура не является плотнейшей упаковкой атомов. Коэффициент компактности равен 0,68. Пространственная группа вольфрама Im3m.

Тип А3 (Структура магния)
В структурном типе магния кристаллизуются гексагональные металлы: кадмий, бериллий, таллий, титан, никель, хром и др. Эта структура также характерна для интерметаллических соединений AgCd, AgCd 3 , AuCd, AuCd 3 , CuCd 3 , AgZn 3 , AuZn 3 , NiMo, TiH, W 2 С и др.
Элементарная ячейка магния - элементарная примитивная. Центры атомов располагаются по вершинам правильных шестиугольников: в трех вершинах - через одну, - атомы верхнего слоя, в трех других вершинах - атомы нижнего слоя. Элементарная ячейка построена на трех трансляциях, две из которых лежат в плотно упакованном слое атомов и составляют между собой угол = 120 о, третья перпендикулярна этому слою. Элементарную ячейку можно разделить плоскостью на две тригональные призмы. В центре одной из призм расположен атом, другая свободна, заселенные и пустые призмы чередуются между собой. На элементарную ячейку приходится два атома магния.
Каждый атом магния окружен двенадцатью ближайшими атомами: шестью - в том же слое, тремя в соседнем слое сверху и тремя в соседнем слое снизу, к.ч.=12. Плотные слои - плоскости базиса (0001), упаковка гексагональная, двухслойная....АВАВАВАВ.... Кристаллы металлов с плотно упакованной гексагональной структурой легче всего деформируются по плоскостям (0001) и направлениям, соответствующим наиболее плотной упаковке атомов. Координационный многогранник - гексагональный кубооктаэдр. Пространственная группа магния Р63/mmc.

Одним из самых распространенных материалов, с которым всегда предпочитали работать люди, был металл. В каждую эпоху предпочтение отдавалось разным видам этих удивительных веществ. Так, IV-III тысячелетия до нашей эры считаются веком хальколита, или медным. Позже его сменяет бронзовый, а затем в силу вступает тот, что и по сей день является актуальным - железный.

Сегодня вообще сложно представить, что когда-то можно было обходиться без металлических изделий, ведь практически все, начиная от предметов быта, медицинских инструментов и заканчивая тяжелой и легкой техникой, состоит из этого материала или включает в свой состав отдельные части из него. Почему же металлы сумели завоевать такую популярность? В чем проявляются особенности и как это заложено в их строении, попробуем разобраться далее.

Общее понятие о металлах

"Химия. 9 класс" - это учебник, по которому проходят обучение школьники. Именно в нем подробно изучаются металлы. Рассмотрению их физических и химических свойств отведена большая глава, ведь разнообразие их чрезвычайно велико.

Именно с этого возраста рекомендуют давать детям представление о данных атомах и их свойствах, ведь подростки уже вполне могут оценить значение подобных знаний. Они прекрасно видят, что окружающее их разнообразие предметов, машин и прочих вещей имеет в своей основе как раз металлическую природу.

Что же такое металл? С точки зрения химии, к данным атомам принято относить те, что имеют:

  • малое на внешнем уровне;
  • проявляют сильные восстановительные свойства;
  • имеют большой атомный радиус;
  • как простые вещества обладают рядом специфических физических свойств.

Основу знаний об этих веществах можно получить, если рассмотреть атомно-кристаллическое строение металлов. Именно оно объясняет все особенности и свойства данных соединений.

В периодической системе для металлов отводится большая часть всей таблицы, ведь они образуют все побочные подгруппы и главные с первой по третью группу. Поэтому их численное превосходство очевидно. Самыми распространенными являются:

  • кальций;
  • натрий;
  • титан;
  • железо;
  • магний;
  • алюминий;
  • калий.

Все металлы имеют ряд свойств, которые позволяют объединять их в одну большую группу веществ. В свою очередь, эти свойства объясняет именно кристаллическое строение металлов.

Свойства металлов

К специфическим свойствам рассматриваемых веществ относят следующие.

  1. Металлический блеск. Все представители простых веществ им обладают, причем большинство одинаковым Лишь некоторые (золото, медь, сплавы) отличаются.
  2. Ковкость и пластичность - способность деформироваться и восстанавливаться достаточно легко. У разных представителей выражена в неодинаковой мере.
  3. Электропроводность и теплопроводность - одно из основных свойств, которое определяет области применения металла и его сплавов.

Кристаллическое строение металлов и сплавов объясняет причину каждого из обозначенных свойств и говорит о выраженности их у каждого конкретного представителя. Если знать особенности такого строения, то можно влиять на свойства образца и подстраивать его под нужные параметры, что и делают люди уже многие десятилетия.

Атомно-кристаллическое строение металлов

В чем же заключается такое строение, чем характеризуется? Само название говорит о том, что все металлы представляют собой кристаллы в твердом состоянии, то есть при обычных условиях (кроме ртути, которая является жидкостью). А что такое кристалл?

Это условное графическое изображение, построенное путем пересечения воображаемых линий через атомы, которые выстраивают тело. Другими словами, каждый металл состоит из атомов. Они располагаются в нем не хаотично, а очень правильно и последовательно. Так вот, если мысленно соединить все эти частицы в одну структуру, то получится красивое изображение в виде правильного геометрического тела какой-либо формы.

Это и принято называть кристаллической решеткой металла. Она очень сложная и пространственно объемная, поэтому для упрощения показывают не всю ее, а лишь часть, элементарную ячейку. Совокупность таких ячеек, собранная вместе и отраженная в и образует кристаллические решетки. Химия, физика и металловедение - это науки, которые занимаются изучением особенностей строения таких структур.

Сама - это набор атомов, которые располагаются на определенном расстоянии друг от друга и координируют вокруг себя строго фиксированное число других частиц. Она характеризуется плотностью упаковки, расстоянием между составными структурами, координационным числом. В целом все эти параметры являются характеристикой и всего кристалла, а значит, отражают и проявляемые металлом свойства.

Существует несколько разновидностей Объединяет их все одна особенность - в узлах находятся атомы, а внутри располагается облако электронного газа, которое формируется путем свободного передвижения электронов внутри кристалла.

Типы кристаллических решеток

Четырнадцать вариантов строения решетки принято объединять в три основных типа. Они следующие:

  1. Объемно-центрированная кубическая.
  2. Гексагональная плотноупакованная.
  3. Гранецентрированная кубическая.

Кристаллическое строение металлов было изучено только благодаря когда стало возможным получать большие увеличения изображений. А классификацию типов решеток впервые привел французский ученый Браве, по фамилии которого их иногда называют.

Объемно-центрированная решетка

Строение кристаллической решетки металлов данного типа представляет собой следующую структуру. Это куб, в узлах которого находится восемь атомов. Еще один располагается в центре свободного внутреннего пространства ячейки, что и объясняет название "объемно-центрированная".

Это один из вариантов наиболее простого строения элементарной ячейки, а значит, и всей решетки в целом. Такой тип имеют следующие металлы:

  • молибден;
  • ванадий;
  • хром;
  • марганец;
  • альфа-железо;
  • бетта-железо и другие.

Основные свойства таких представителей - высокая степень ковкости и пластичности, твердость и прочность.

Гранецентрированная решетка

Кристаллическое строение металлов, имеющих гранецентрированную кубическую решетку, представляет собой следующую структуру. Это куб, который включает в свой состав четырнадцать атомов. Восемь из них формируют узлы решетки, а еще шесть расположены по одному на каждой грани.

Подобную структуру имеют:

  • алюминий;
  • никель;
  • свинец;
  • гамма-железо;
  • медь.

Основные отличительные свойства - блеск разного цвета, легкость, прочность, ковкость, повышенная устойчивость к коррозии.

Гексагональная решетка

Кристаллическое строение металлов, обладающих решетки, следующее. В основе элементарной ячейки лежит шестигранная призма. В ее узлах располагается 12 атомов, еще два по основаниям и три атома свободно лежат внутри пространства в центре структуры. Всего семнадцать атомов.

Подобную сложную конфигурацию имеют такие металлы, как:

  • альфа-титан;
  • магний;
  • альфа-кобальт;
  • цинк.

Основные свойства - высокая степень прочности, сильный серебристый блеск.

Дефекты кристаллического строения металлов

Однако все рассмотренные типы ячеек могут иметь и естественные недостатки, или так называемые дефекты. Это может быть связано с разными причинами: посторонними атомами и примесями в металлах, внешними воздействиями и прочим.

Поэтому существует классификация, отражающая дефекты, которые могут иметь кристаллические решетки. Химия как наука изучает каждый из них с целью выявления причины и способа устранения, чтобы свойства материала не были изменены. Итак, дефекты следующие.

  1. Точечные. Они бывают трех основных видов: вакансии, примеси или дислоцированные атомы. Приводят к ухудшению магнитных свойств металла, электро- и теплопроводности его.
  2. Линейные, или дислокационные. Выделяют краевые и винтовые. Ухудшают прочность и качество материала.
  3. Поверхностные дефекты. Влияют на внешний вид и структуру металлов.

В настоящее время разработаны методики устранения дефектов и получения чистых кристаллов. Однако совсем искоренить их не удается, идеальной кристаллической решетки не существует.

Значение знаний о кристаллическом строении металлов

Из вышеизложенного материала очевидно, что знания о тонкой структуре и строении позволяют спрогнозировать свойства материала и повлиять на них. И это позволяет делать наука химия. 9 класс общеобразовательной школы делает в процессе обучения упор на то, чтобы сформировать у учащихся четкое понятие о важном значении основополагающей логической цепочки: состав - строение - свойства - применение.

Сведения о кристаллическом строении металлов очень четко иллюстрирует и позволяет учителю наглядно объяснить и показать детям, насколько важно знать тонкую структуру, чтобы правильно и грамотно использовать все свойства.

Большинство твердых веществ имеют кристаллическую структуру , в которой частицы, из которых она «построена» находятся в определенном порядке, создавая тем самым кристаллическую решетку . Она строится из повторяющихся одинаковых структурных единиц - элементарных ячеек , которая связывается с соседними ячейками, образуя дополнительные узлы. В результате существует 14 различных кристаллических решеток.

Типы кристаллических решеток.

В зависимости от частиц, которые стоят в узлах решетки, различают:

  • металлическую кристаллическую решетку;
  • ионную кристаллическую решетку;
  • молекулярную кристаллическую решетку;
  • макромолекулярную (атомную) кристаллическую решетку.

Металлическая связь в кристаллических решетках.

Ионные кристаллы обладают повышенной хрупкостью, т.к. сдвиг в решетке кристалла (даже незначительный) приводит к тому, что одноименно заряженные ионы начинают отталкиваться друг от друга, и связи рвутся, образуются трещины и расколы.

Молекулярная связь кристаллических решеток.

Основная особенность межмолекулярной связи заключается в ее «слабости» (ван-дер-ваальсовые, водородные).

Это структура льда. Каждая молекула воды связана водородными связями с 4-мя окружающими ее молекулами, в результате структура имеет тетраэдрический характер.

Водородная связь объясняет высокую температуру кипения, плавления и малую плотность;

Макромолекулярная связь кристаллических решеток.

В узлах кристаллической решетки находятся атомы. Эти кристаллы разделяются на 3 вида:

  • каркасные;
  • цепочечные;
  • слоистые структуры.

Каркасной структурой обладает алмаз - одно их самых твердых веществ в природе. Атом углерода образует 4 одинаковые ковалентные связи, что говорит о форме правильного тетраэдра (sp 3 - гибридизация). Каждый атом имеет неподеленную пару электронов, которые также могут связываться с соседними атомами. В результате чего образуется трехмерная решетка, в узлах которой только атомы углерода.

Энергии для разрушения такой структуры требуется очень много, температура плавления таких соединений высока (у алмаза она составляет 3500°С).

Слоистые структуры говорят о наличии ковалентных связях внутри каждого слоя и слабых ван-дер-ваальсовых - между слоями.

Рассмотрим пример: графит. Каждый атом углерода находится в sp 2 - гибридизации. 4-ый неспаренный электрон образует ван-дер-ваальсовую связь между слоями. Поэтому 4ый слой очень подвижен:

Связи слабые, поэтому их легко разорвать, что можно наблюдать у карандаша - «пишущее свойство» - 4ый слой остается на бумаге.

Графит - отличный проводник электрического тока (электроны способны перемещаться вдоль плоскости слоя).

Цепочечными структурами обладают оксиды (например, SO 3 ), который кристаллизуется в виде блестящих иголок, полимеры, некоторые аморфные вещества, силикаты (асбест).

Изучение металлов в соответствии с периодической системой элементов Менделеева показывает, что за исключением Mn и Hg элементы подгруппы А, в том числе переходные металлы и большинство редкоземельных элементов, а также металлы подгрупп IB и IIB и некоторые элементы группы IIIB, в том числе Al образуют одну из следующих типичных металлических структур:

А 1 - кубическая гранецентрированная решетка (ГЦК)

Кубической гранецентрированной решеткой обладают следующие металлы: g - Fe, Al, Cu, Ni, a - Co, Pb, Ag, Au, Pt и др.

В кубической гранецентрированной решетке атомы располагаются по вершинам элементарной ячейки и в центрах ее граней (рис.1.5).

Каждый атом в этой решетке окружен 12-ю ближайшими соседями, располагающихся на одинаковых расстояниях, равных = 0,707×а , где а - ребро элементарной ячейки. Число ближайших соседей, равное 12-ти называется координационным числом кристаллической решетки. Кроме этих ближайших атомов, в кристаллической решетке имеется 6 атомов, удаленных на значительно большие расстояния, равные а .

Рассматриваемая кристаллическая решетка имеет два вида пустот, (междоузлий, в которых могут располагаться более мелкие атомы других элементов в сплавах) образующих твердые растворы внедрения.

Наибольшие междоузлия или пустоты находятся в центре куба и посередине его ребер. Каждая из этих пустот окружена шестью атомами ГЦК решетки, занимающими места в вершинах правильного октаэдра. В связи с этим, они называются октаэдрическими пустотами (рисунок 1.5, б ). Такие положения различных элементов в гранецентрированной кубической решетке занимают атомы Na и Cl в решетке NaCl. Такие же положения занимает углерод в решетке g - Fe.

Кроме этих пустот в ГЦК решетке имеются более мелкие пустоты, называемые тетраэдрическими, в связи с тем, что их окружают 4 атома. Всего в ГЦК решетке 8 тетраэдрических пустот (рисунок 1.5, в ).

Размеры тетраэдрических и октаэдрических пустот можно ощутить, если предположить, что решетка построена из жестких шаров, радиусом r, соприкасающихся друг с другом; в этом случае в имеющиеся промежутки можно было бы поместить сферы, радиусом 0,41 r и 0,225 r соответственно для октаэдрической и тетраэдрической пустот.

Наиболее плотноупакованными плоскостями в структуре гранецентрированного куба являются плоскости изображенные на рисунке. Их условное обозначение {111} (рисунок 1.5., г ).


Объемно-центрированную кубическую решетку А 2 (ОЦК) имеют металлы a - Fe, хром, вольфрам, молибден, ванадий, натрий, литий и другие. Структура А 2 является менее плотноупакованной.

Атомы в решетке ОЦК располагаются в вершинах и в центре элементарной ячейки (рисунок 1.6).

Каждый атом в этой ячейке имеет 8 ближайших соседей, располагающихся на расстоянии где, а - длина ребра куба. Следовательно, координационное число решетки равно 8. Иногда его обозначают (8 + 6), т.к. следующие по удаленности атомы расположено на расстоянии а, число их равно 6.

В структуре ОЦК также имеются 2 типа пустот. Крупные занимают положения на гранях куба (рисунок 1.6, в ). Они окружены 4 атомами, располагающимися в вершинах тетраэдра, ребра которых попарно равны. Более мелкие пустоты, окруженные 6 атомами, занимающими места в вершинах неправильного октаэдра, располагаются посередине ребер и граней ячейки (рисунок 1.6, г ). Если структуру ОЦК решетки построить из жестких шаров, то в тетраэдрические пустоты можно поместить сферы радиусом 0,292 r, а в октаэдрические - 0,154 r.

Таким образом, максимальный размер сферы, которую можно поместить в пустоты более плотно упакованной решетки ГЦК оказывается большим, чем в решетку ОЦК.

Внедрение других атомов в октаэдрическую пору ОЦК решетки вызывает смещение двух атомов в направлении параллельными ребру куба, что вызывает расширение решетки в этом направлении. В структуре мартенсита, где атомы углерода внедряются в октаэдрические пустоты, расположенные только на ребрах, параллельных оси С и в центрах граней, перпендикулярных этой оси, это приводит к тетрагональному искажению решетки a - Fe.

Наиболее плотноупакованными плоскостями ОЦК являются 12 плоскостей семейства {110} (рисунок 1.6.б ). В этих плоскостях имеются 2 направления, в которых жесткие шары могут соприкасаться.

Гексагональной плотноупакованной решеткой А 3 (ГПУ) обладают такие металлы, как Zn, b - Co, Cd, Mg, a - Ti, a - Zr.

Гексагональная решета построена из отдельных слоев, причем таким образом, что каждый атом любого слоя окружен 6 расположенными на равных расстояиях соседями, принадлежащими этому же слою, и, кроме того, имеет по три ближайших соседа в слоях, расположенных выше и ниже данного слоя (рисунок 1.7).

Расстояние между атомами в гексагональных слоях обозначается через а , высота ячейки через с. Шесть ближайших соседей, расположенных в смежных слоях будут также находиться на расстоянии, а от данного атома, если отношение осей с/а составит, то такая структура называется идеальной плотноупакованной. Причем координационное число в этом случае, также как и в ГЦК решетке, равно 12.

Большинство металлов с гексагональной плотноупакованной решеткой имеет отношение осей с/а = 1,56 - 1,63. Исключения составляют Zn и Cd (1,86; 1,89). Это связано с тем, что электронные облака атомов Zn и Cd не обладают сферической симметрией и вытянуты вдоль оси С. В гексагональной плотноупакованной решетке, также как и в ГЦК, имеется 2 вида пустот: октаэдрические и тетраэдрические (рисунок 1.7, б ).

Диаметры жестких сфер, которые могут быть помещены в эти пустоты также как и для ГЦК равны 0,41 r и 0,225 r.

Достаточно взглянуть на построение плотноупакованных плоскостей ГЦК решетки {111} (рисунок 1.8, а ), чтобы найти полную аналогию в построении атомов в этих двух решетках. Разница этих решеток состоит в чередовании слоев. Если в гексагональной решетке происходит чередование слоев АВАВ и т.д., то в ГЦК решетке: АВСАВС (рисунок 1.8, б ), т.е. при этом используется третье возможное положение плотноупакованного слоя.

Разница в энергетическом отношении между этими двумя решетками незначительна и, в связи с этим, последовательность чередования слоев может легко нарушиться при пластической деформации, а также в результате возникновения дефектов кристалла во время его роста, так называемых дефектов упаковки.

Таким образом, кажущаяся разница в построении ГПУ и ГЦК решетки совсем не велика (рисунок 1.8).

Углерод в виде алмаза, кремний, германий, a - олово (серое) имеют двойную кубическую решетку типа алмаза (рисунок 1.9). Она отличается от ГЦК решетки наличием в четырех из восьми тетраэдрических пустот дополнительно четырех атомов. В результате, структура оказывается более рыхлой.

Каждый атом алмаза окружен лишь четырьмя ближайшими соседями, располагающимися в углах правильного тетраэдра. Координационное число такой структуры равно 4.

Как было показано выше, одни и те же металлы при разных температурах могут иметь разное кристаллическое строение, что вызвано их аллотропией.

Аллотропическим (полиморфным) превращением называют изменение пространственной решетки кристаллического тела.

В качестве примеров аллотропических превращений можно привести превращение низкотемпературной аллотропической формы a - Fe с объемно-центрированной кубической решеткой в высокотемпературную форму g - Fe с гранецентрированной кубической решеткой, при температуре 910 °С и последующее превращение при температуре 1392 °С g - Fe в d - Fe с объемно-центрированной кубической решеткой, аналогичной a - Fe. Аналогичные превращения можно наблюдать в титане, цирконии и т.д. В титане и цирконии низкотемпературной аллотропической формой являются a - Ti, a - Zr с гексагональной плотноупакованной решеткой. При температуре выше 882 °С для титана и 862 °С для циркония образуются b - Ti и b - Zr, обладающие объемно-центрированной решеткой.

Как вы видели, аллотропическое превращение заключается в том, что атомное строение кристаллического тела изменяется при нагреве и охлаждении. Сам процесс перестройки кристаллической решетки происходит изотермически при постоянной температуре, кривая охлаждения сплава претерпевающего аллотропические превращения, аналогична кривой, наблюдаемой при затвердевании жидкого металла. Температура перехода называется критической точкой превращения. При температуре (Т 0) наблюдается фазовое равновесие двух аллотропических разновидностей.

Аналогично процессу кристаллизации аллотропическое превращение идет с поглощением тепла при нагреве и выделением его при охлаждении. Аллотропическое превращение (также по аналогии с процессом кристаллизации) происходит путем образования зародышей и их последующего роста, в связи с чем оно протекает всегда с наличием переохлаждения (при охлаждении) и перенагрева при нагреве.

Аллотропическое превращение происходит, так же как и процесс кристаллизации, в связи со стремлением системы к уменьшению свободной энергии.

Гранецентрированная кубическая ячейка, относящаяся к кубической сингонии; Смотри также: Ячейка электролитическая ячейка гранецентрированная ячейка …

Ячейка - : Смотри также: электролитическая ячейка гранецентрированная ячейка базоцентрированная ячейка … Энциклопедический словарь по металлургии

ЯЧЕЙКА ГРАНЕЦЕНТРИРОВАННАЯ КУБИЧЕСКАЯ - один из 14 типов решеток Браве. Характеризуется расположением узлов по вершинам и в центрах всех граней куба. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 … Геологическая энциклопедия

кубическая сингония - кристаллографическая сингония, для которой характерно соотношение между углами и рёбрами элементарной ячейки кристалла: а = b = с, α = β = γ = 90º. Подразделяется на 5 классов (точечных групп симметрии). * * * КУБИЧЕСКАЯ СИНГОНИЯ КУБИЧЕСКАЯ… … Энциклопедический словарь

кубическая решетка (К6) - кристаллическая решетка, элементарная ячейка которой относится к кубической сингонии; Смотри также: Решетка триклинная решетка тетрагональная решетка пространственная решетка … Энциклопедический словарь по металлургии

Кубическая сингония

Кубическая гранецентрированная решётка - В кристаллографии кубическая сингония одна из семи сингоний. Элементарная ячейка кристалла кубической сингонии определяется тремя векторами равной длины, перпендикулярными друг другу. В кубической сингонии существует три вида решёток Бравэ:… … Википедия

Кубическая решетка - В кристаллографии кубическая сингония одна из семи сингоний. Элементарная ячейка кристалла кубической сингонии определяется тремя векторами равной длины, перпендикулярными друг другу. В кубической сингонии существует три вида решёток Бравэ:… … Википедия

Кубическая решётка - В кристаллографии кубическая сингония одна из семи сингоний. Элементарная ячейка кристалла кубической сингонии определяется тремя векторами равной длины, перпендикулярными друг другу. В кубической сингонии существует три вида решёток Бравэ:… … Википедия

электролитическая ячейка - сосуд с электролитом, снабженный электродами, в котором реализуются электрохимическии реакции; основной конструкционный элемент промышленных электролизеров. Конструкции электролитической ячейки чрезвычайно разнообразны. В… … Энциклопедический словарь по металлургии

гранецентрированная ячейка - элементарная ячейка кристалла в виде параллелепипеда, в центре каждой грани которого располается дополнительный атом, однотипный атомам в его вершинах; Смотри также: Ячейка электролитическая ячейка … Энциклопедический словарь по металлургии


Самое обсуждаемое
Шарль де Голь (различные взгляды на жизнь и деятельность) Франция и европа Шарль де Голь (различные взгляды на жизнь и деятельность) Франция и европа
Мгу экология и природопользование Мгу экология и природопользование
Феодалы в раннем средневековье Феодалы в раннем средневековье


top