Из истории логарифмов. Что такое логарифм? Решение логарифмов. Примеры. Свойства логарифмов Что такое логарифм

Из истории логарифмов. Что такое логарифм? Решение логарифмов. Примеры. Свойства логарифмов Что такое логарифм

Открытие логарифмов опиралось на хорошо известные к концу 16 в. свойства прогрессий. Многие математики замечали, что умножению, делению, возведению в степень и извлечению корня в геометрической прогрессии соответствуют в арифметической прогрессии (в том же порядке) сложение, вычитание, умножение и деление. Настоящим триумфом стало открытие логарифмов как показателей степеней. Основные свойства логарифмов позволяют заменить умножение, возведение в степень и более простыми действиями сложения, вычитания, .

Логарифмы были изобретены независимо друг от друга Непером и Бюрги в начале 16 в. В 1614 г. Непер опубликован свое "Описание удивительной таблицы логарифмов", содержавшее определение логарифмов (и их свойства), которые теперь мы называем Неперовыми логарифмами, а в 1620 г. швейцарец Иост Бюрги (1552-1632) – опубликовал книгу "Таблицы арифметической и геометрической прогрессий, вместе с основательным наставлением, как их нужно понимать и с пользой применять во всяческих вычислениях". Однако таблицы Бюрги не получили значительного распространения.

Открытие логарифмов Непером, в первые же годы приобрело исключительно широкую известность. С логарифмами многие расчеты пошли в десятки раз быстрее и легче. Недаром великий французский математик Пьер Симон Лаплас говорил, что "изобретение логарифмов удлинило жизнь".

Термин "логарифм" (logarithmus) тоже принадлежит Неперу. Он возник из сочетания греческих слов: logos – "отношение" и arithmus – "число", т. е. означало число отношений. Однако ни у Непера, ни у Бюрги не было, строго говоря, основания логарифмов, поскольку логарифм единицы отличается от . Даже значительно позднее, когда уже перешли к десятичным и натуральным логарифмам, еще не было сформулировано определение логарифма как показателя степени данного основания.

Таблицы Непера, приспособленные к тригонометрическим вычислениям, были неудобны для действий с подобными числами. В 1615 г. Непер познакомился с Генри Бригсом (1561-1631) – профессором математики Грешем-колледжа, который тоже задумывался над тем, как усовершенствовать таблицы логарифмов. В ходе беседы с Бригсом Непер предложил составить таблицы логарифмов, приняв за логарифм единицы нуль, а за логарифм десяти - просто единицу, и таким образом устранить имевшиеся недостатки. Воплотить свои идеи в жизнь Непер не смог из-за пошатнувшегося здоровья, но он указал идею двух вычислительных приемов, развитых далее Бригсом.

В 1617 г. Бригс опубликовал первые результаты своих кропотливых вычислений – "Первую тысячу логарифмов". В этих таблицах были даны восьмизначные десятичные логарифмы чисел от 1 до 1000. Позднее (в 1624 г.), уже после того как он стал профессором в Оксфорде, Бригс выпустил "Логарифмическую арифметику". В книге содержались четырнадцатизначные логарифмы чисел от 1 до 20000 и от 90000 до 100000.

Сам термин "натуральный логарифм" в 1659 г. ввел Пьетро Менголи – итальянский математик, преподававший в Болонском университете, а знак Log был введен в 1624 г. Иоганном Кеплером (1571-1630), знаменитым немецким математиком, астрономом и оптиком, открывшим законы движения планет.

Следует отметить огромную работу, проделанную голландским математиком Андрианом Влакком. В 1628 г. он издал десятизначные таблицы логарифмов от 1 до 100000. Таблицы Влакка легли в основу большинства последующих таблиц, причем их авторы внесли много изменений в структуру логарифмических таблиц и поправок. В России таблицы логарифмов впервые были изданы в 1703 г. Л. Ф. Магницким.

За основание Бригговых логарифмов, как уже отмечалось, было взято число 10. В случае же Неперовых логарифмов сама константа (основание логарифмов) явно не определена. Первое известное использование этой константы, где она обозначалась буквой встречается в письмах Готфрида Лейбница к Кристиану Гюйгенсу в 1690 и 1691 гг. Букву е начал использовать Леонард Эйлер в 1727 г., а первой публикацией с использованием этой буквы была его работа "Механика, или Наука о движении, наложенная аналитически" (1736). Соответственно, е иногда называют числом Эйлера. В 1874 г. французский математик Ш. Эрмит доказал, что основание натуральных логарифмов е трансцендентно (как ). Величина е = 2,718 281 828 459 045 235 360 287 471 352 662 49.

Число е можно запомнить по следующему : два и семь, далее два раза год рождения Льва Толстого (1828), а затем углы равнобедренного прямоугольного треугольника (45. 90 и 45 градусов). А вот еще один оригинальный способ запоминания: предлагается запомнить число е с точностью до трех знаков после запятой через "число дьявола": нужно разделить 666 на число, составленное из цифр 6 - 4, 6 - 2, 6 - 1 (три шестерки, из которых в обратном порядке удаляются три первые степени двойки): 666/245 = 2,718.

В шестнадцатом веке быстрыми темпами развивалось мореплавание. Поэтому совершенствовались наблюдения за небесными телами. Для упрощения астрономических расчетов в конце 16 – начале 17 веков возникли логарифмические вычисления.

Ценность логарифмического метода заключается в сведении умножения и деления чисел к сложению и вычитанию. Действиям менее трудоемким. Особенно если приходится работать с многозначными числами.

Метод Бюрги

Первые логарифмические таблицы были составлены швейцарским математиком Йостом Бюрги в 1590 году. Суть его метода состояла в следующем.

Чтобы умножить, например, 10 000 на 1 000, достаточно сосчитать число нулей в множимом и множителе, сложить их (4 + 3) и записать произведение 10 000 000 (7 нулей). Сомножители – целые степени числа 10. При умножении показатели степеней складываются. Также выполняется и деление. Оно заменяется вычитанием показателей степеней.

Таким образом, можно делить и умножать не все числа. Но их станет больше, если в качестве основания взять число, близкое к 1. Например, 1,000001.

Так и поступил четыреста лет назад математик Йост Бюрги. Правда свою работу «Таблицы арифметической и геометрической , вместе с основательным наставлением…» он опубликовал только в 1620 году.

Родился Йост Бюрги 28 февраля 1552 года в Лихтенштейне. С 1579 по 1604 год служил придворным астрономом у ландграфа Гессен-Касселя Вильгельма IV. Позже у императора Рудольфа II в Праге. За год до своей смерти, в 1631 году, в Кассель. Бюрги известен и как изобретатель первых маятниковых часов.

Таблицы Непера

В 1614 году появились таблицы Джона Непера. Этот ученый тоже брал за основание число, близкое к единице. Но оно было меньше единицы.

Шотландский барон Джон Непер (1550-1617) учился на родине. Любил путешествовать. Побывал в Германии, Франции и Испании. В 21 год вернулся в семейное поместье недалеко от Эдинбурга и прожил там до смерти. Занимался богословием и математикой. Последнюю изучал по сочинениям Евклида, Архимеда и Коперника.

Десятичные логарифмы

Неперу и англичанину Бриггу принадлежит идея составления таблицы десятичных логарифмов. Работу по пересчету ранее составленных таблиц Непера они начали вместе. После смерти Непера Бригг ее продолжил. Работу он опубликовал в 1624 году. Поэтому десятичные называют еще бригговыми.

Составление логарифмических таблиц потребовало от ученых многолетней трудоемкой работы. Зато во много раз повысилась производительность труда тысяч вычислителей, которые пользовались составленными ими таблицами.

ФГОУ СПО ХАКАССКИЙ ПОЛИТЕХНИЧЕСКИЙ КОЛЛЕДЖ

Внеаудиторная самостоятельная работа по теме:

История возникновения логарифма. Логарифмирование и потенцирование

Выполнил студент группы ТВТ-11

Романов Иван.

Проверил преподаватель:

Волкова Татьяна Валерьевна

1 Вещественный логарифм

      1.1 Свойства

      1.2 Натуральные логарифмы

      1.3 Десятичные логарифмы

      1.4 Логарифмическая функция

      • 1.4.1 Исследование логарифмической функции

2 Комплексный логарифм

      2.1 Многозначная функция

      2.2 Аналитическое продолжение

      2.3 Риманова поверхность

3 Исторический очерк

      3.1 Вещественный логарифм

      3.2 Комплексный логарифм

4 Логарифмические таблицы

Логарифмы

Логарифм. Основное логарифмическое тождество.

Свойства логарифмов. Десятичный логарифм. Натуральный логарифм.

Логарифмом положительного числа N по основанию (b > 0, b 1)называется показатель степени x , в которую нужно возвести b, чтобы получить N .

Обозначение логарифма:

Эта запись равнозначна следующей: b x = N .

П р и м е р ы: log 81 = 4 , так как 3 4 = 81 ;

log 27 = 3 , так как (1/3)  3 = 3 3 = 27 .

Вышеприведенное определение логарифма можно записать в виде тождества:

Основные свойства логарифмов.

1) log b = 1 , так как b 1 = b .

2) log 1 = 0 , так как b 0 = 1 .

3) Логарифм произведения равен сумме логарифмов сомножителей:

log ( ab ) = log a + log b .

4) Логарифм частного равен разности логарифмов делимого и делителя:

log ( a / b ) = log a – log b .

5) Логарифм степени равен произведению показателя степени на логарифм её основания:

log ( b k ) = k · log b .

Следствием этого свойства является следующее: логарифм корня равен логарифму подкоренного числа, делённому на степень корня:

6) Если в основании логарифма находится степень, то величину, обратную показателю степени, можно вынести за знак логарифма:

Два последних свойства можно объединить в одно:

7) Формула модуля перехода (т.e. перехода от одного основания логарифма к другому основанию):

В частном случае при N = a имеем:

Десятичным логарифмом называется логарифм по основанию 10. Он обозначается lg , т.е. log 10 N = lg N . Логарифмы чисел 10, 100, 1000, ... pавны соответственно 1, 2, 3, …, т.е. имеют столько положительных

единиц, сколько нулей стоит в логарифмируемом числе после единицы. Логарифмы чисел 0.1, 0.01, 0.001, ... pавны соответственно –1, –2, –3, …, т.е. имеют столько отрицательных единиц, сколько нулей стоит в логарифмируемом числе перед единицей (считая и нуль целых). Логарифмы остальных чисел имеют дробную часть, называемую мантиссой . Целая часть логарифма называется характеристикой . Для практического применения десятичные логарифмы наиболее удобны.

Натуральным логарифмом называется логарифм по основанию е . Он обозначается ln , т.е. log e N = ln N . Число е является иррациональным, его приближённое значение 2.718281828. Оно является пределом, к которому стремится число (1 + 1 / n ) n при неограниченном возрастании n (см. так называемый второй замечательный предел в разделе "Пределы"). Как это ни покажется странным, натуральные логарифмы оказались очень удобными при проведении различного рода операций, связанных с анализом функций. Вычисление логарифмов по основанию е осуществляется гораздо быстрее, чем по любому другому основанию.

Логарифм

Графики логарифмических функций

Логарифм числа b по основанию a (от греч. λόγος - «слово», «отношение» и ἀριθμός - «число» ) определяется как показатель степени , в которую надо возвести число a , чтобы получить число b . Обозначение: . Из определения следует, что записи и равносильны.

Пример: , потому что .

Вещественный логарифм

Логарифм вещественного числа log a b имеет смысл при .

Наиболее широкое применение нашли следующие виды логарифмов.

Если рассматривать логарифмируемое число как переменную, мы получим логарифмическую функцию , например: . Эта функция определена в правой части числовой прямой: x > 0, непрерывна и дифференцируема там (см. рис. 1).

Свойства

Доказательство [показать]

Докажем, что .

(так как по условию bc > 0).

Доказательство [показать]

Докажем, что

(так как по условию

Доказательство [показать]

Докажем, что .

(так как b p > 0 по условию).

Доказательство [показать]

Докажем, что

Доказательство [показать]

Используем для доказательства тождество . Логарифмируем обе части тождества по основанию c. Получаем:

Доказательство [показать]

Логарифмируем левую и правую части по основанию c :

Левая часть:

Правая часть:

Равенство выражений очевидно. Т. к. логарифмы равны, то в силу монотонности логарифмической функции равны и сами выражения.

Натуральные логарифмы

Для производной натурального логарифма справедлива простая формула:

По этой причине в математических исследованиях преимущественно используют именно натуральные логарифмы. Они нередко появляются при решении дифференциальных уравнений, исследовании статистических зависимостей (например, распределения простых чисел) и т. п.

При справедливо равенство

Этот ряд сходится быстрее, а кроме того, левая часть формулы теперь может выразить логарифм любого положительного числа.

Связь с десятичным логарифмом: .

Десятичные логарифмы

Рис. 2. Логарифмическая шкала

Логарифмы по основанию 10 (обозначение: lg a ) до изобретения калькуляторов широко применялись для вычислений. Неравномерная шкала десятичных логарифмов обычно наносится и на логарифмические линейки . Подобная шкала широко используется в различных областях науки, например:

    Физика - интенсивность звука (децибелы ).

    Астрономия - шкала яркости звёзд .

    Химия - активность водородных ионов (pH ).

    Сейсмология - шкала Рихтера .

    Теория музыки - нотная шкала, по отношению к частотам нотных звуков.

    История - логарифмическая шкала времени .

Логарифмическая шкала также широко применяется для выявления показателя степени в степенных зависимостях и коэффициента в показателе экспоненты. При этом график, построенный в логарифмическом масштабе по одной или двум осям, принимает вид прямой, более простой для исследования.

Логарифмическая функция

Логарифмической функцией называется функция вида f (x ) = log a x , определённая при

Исследование логарифмической функции

Область определения:

Область значения:

График любой логарифмической функции проходит через точку (1;0)

Производная логарифмической функции равна:

Доказательство [показать]

I. Докажем, что

Запишем тождество e ln x = x и продифференцируем его левую и правую части

Получаем, что , откуда следует, что

II. Докажем, что

Функция являются строго возрастающей при a > 1 и строго убывающей при 0 a

Прямая x = 0 является левой вертикальной асимптотой , поскольку при a > 1 и при 0 a

Комплексный логарифм

Многозначная функция

Для комплексных чисел логарифм определяется так же, как вещественный. Начнём с натурального логарифма, который обозначим и определим как множество всех комплексных чисел z таких, что e z = w . Комплексный логарифм существует для любого , и его вещественная часть определяется однозначно, в то время как мнимая имеет бесконечное множество значений. По этой причине его называют многозначной функцией. Если представить w в показательной форме:

то логарифм находится по формуле:

Здесь - вещественный логарифм, r = | w | , k - произвольное целое число . Значение, получаемое при k = 0, называется главным значением комплексного натурального логарифма; принято брать в нём значение аргумента в интервале (− π,π]. Соответствующая (уже однозначная) функция называется главной ветвью логарифма и обозначается . Иногда через также обозначают значение логарифма, лежащее не на главной ветви.

Из формулы следует:

    Вещественная часть логарифма определяется по формуле:

    Логарифм отрицательного числа находится по формуле:

Примеры (приведено главное значение логарифма):

Аналогично рассматриваются комплексные логарифмы с другим основанием. Следует, однако, быть осторожным при преобразованиях комплексных логарифмов, принимая во внимание, что они многозначны, и поэтому из равенства логарифмов каких-либо выражений не следует равенство этих выражений. Пример ошибочного рассуждения:

i π = ln(− 1) = ln((− i ) 2) = 2ln(− i ) = 2(− i π / 2) = − i π - явная нелепость.

Отметим, что слева стоит главное значение логарифма, а справа - значение из нижележащей ветви (k = − 1). Причина ошибки - неосторожное использования свойства , которое, вообще говоря, подразумевает в комплексном случае весь бесконечный набор значений логарифма, а не только главное значение.

Риманова поверхность

Комплексная логарифмическая функция - пример римановой поверхности ; её мнимая часть (рис. 3) состоит из бесконечного числа ветвей, закрученных наподобие спирали. Эта поверхность односвязна ; её единственный нуль (первого порядка) получается при z = 1, особые точки: z = 0 и (точки разветвления бесконечного порядка).

Риманова поверхность логарифма является универсальной накрывающей для комплексной плоскости без точки 0.

Исторический очерк

Вещественный логарифм

Потребность в сложных расчётах в XVI веке быстро росла, и значительная часть трудностей была связана с умножением и делением многозначных чисел. В конце века нескольким математикам, почти одновременно, пришла в голову идея: заменить трудоёмкое умножение на простое сложение, сопоставив с помощью специальных таблиц геометрическую и арифметическую прогрессии, при этом геометрическая будет исходной. Тогда и деление автоматически заменяется на неизмеримо более простое и надёжное вычитание. Первым эту идею опубликовал в своей книге «Arithmetica integra » Михаэль Штифель , который, впрочем, не приложил серьёзных усилий для реализации своей идеи.

В 1614 году шотландский математик-любитель Джон Непер опубликовал на латинском языке сочинение под названием «Описание удивительной таблицы логарифмов ». В нём было краткое описание логарифмов и их свойств, а также 8-значные таблицы логарифмов синусов , косинусов и тангенсов , с шагом 1". Термин логарифм , предложенный Непером, утвердился в науке.

Понятия функции тогда ещё не было, и Непер определил логарифм кинематически , сопоставив равномерное и логарифмически-замедленное движение. В современной записи модель Непера можно изобразить дифференциальным уравнением: dx/x = -dy/M , где M - масштабный множитель, введённый для того, чтобы значение получилось целым числом с нужным количеством знаков (десятичные дроби тогда ещё не нашли широкого применения). Непер взял M = 10000000.

Строго говоря, Непер табулировал не ту функцию, которая сейчас называется логарифмом. Если обозначить его функцию LogNap(x), то она связана с натуральным логарифмом следующим образом:

Очевидно, LogNap(M) = 0, то есть логарифм «полного синуса» есть нуль - этого и добивался Непер своим определением. LogNap(0) = ∞.

Основное свойство логарифма Непера: если величины образуют геометрическую прогрессию , то их логарифмы образуют прогрессию арифметическую . Однако правила логарифмирования для неперовой функции отличались от правил для современного логарифма.

Например, LogNap(ab) = LogNap(a) + LogNap(b) - LogNap(1) .

К сожалению, все значения таблицы Непера содержали вычислительную ошибку после шестого знака. Однако это не помешало новой методике вычислений получить широчайшую популярность, и составлением логарифмических таблиц занялись многие европейские математики, включая Кеплера .

В 1620-е годы Эдмунд Уингейт и Уильям Отред изобрели первую логарифмическую линейку , до появления карманных калькуляторов - незаменимый инструмент инженера.

Близкое к современному понимание логарифмирования - как операции, обратной возведению в степень - впервые появилось у Валлиса и Иоганна Бернулли , а окончательно было узаконено Эйлером в XVIII веке . В книге «Введение в анализ бесконечных» (1748 ) Эйлер дал современные определения как показательной , так и логарифмической функций, привёл разложение их в степенные ряды, особо отметил роль натурального логарифма.

Эйлеру принадлежит и заслуга распространения логарифмической функции на комплексную область.

Комплексный логарифм

Первые попытки распространить логарифмы на комплексные числа предпринимали на рубеже XVII-XVIII веков Лейбниц и Иоганн Бернулли , однако создать целостную теорию им не удалось - в первую очередь по той причине, что тогда ещё не было ясно определено само понятие логарифма. Дискуссия по этому поводу велась сначала между Лейбницем и Бернулли, а в середине XVIII века - между Даламбером и Эйлером. Бернулли и Даламбер считали, что следует определить log(-x) = log(x) . Полная теория логарифмов отрицательных и комплексных чисел была опубликована Эйлером в 1747-1751 годах и по существу ничем не отличается от современной.

Хотя спор продолжался (Даламбер отстаивал свою точку зрения и подробно аргументировал её в статье своей «Энциклопедии» и в других трудах), однако точка зрения Эйлера быстро получила всеобщее признание.

Логарифмические таблицы

Логарифмические таблицы

Из свойств логарифма следует, что вместо трудоёмкого умножения многозначных чисел достаточно найти (по таблицам) и сложить их логарифмы, а потом по тем же таблицам выполнить потенцирование , то есть найти значение результата по его логарифму. Выполнение деления отличается только тем, что логарифмы вычитаются. Лаплас говорил, что изобретение логарифмов «продлило жизнь астрономов», многократно ускорив процесс вычислений.

При переносе десятичной запятой в числе на n разрядов значение десятичного логарифма этого числа изменяется на n . Например, lg8314,63 = lg8,31463 + 3. Отсюда следует, что достаточно составить таблицу десятичных логарифмов для чисел в диапазоне от 1 до 10.

Первые таблицы логарифмов опубликовал Джон Непер (1614 ), и они содержали только логарифмы тригонометрических функций, причём с ошибками. Независимо от него свои таблицы опубликовал Иост Бюрги, друг Кеплера (1620 ). В 1617 году оксфордский профессор математики Генри Бригс опубликовал таблицы, которые уже включали десятичные логарифмы самих чисел, от 1 до 1000, с 8 (позже - с 14) знаками. Но и в таблицах Бригса обнаружились ошибки. Первое безошибочное издание на основе таблиц Вега (1783 ) появилось только в 1857 году в Берлине (таблицы Бремивера).

В России первые таблицы логарифмов были изданы в 1703 году при участии Л. Ф. Магницкого . В СССР выпускались несколько сборников таблиц логарифмов.

    Брадис В. М. Четырехзначные математические таблицы. 44-е издание, М., 1973.

Таблицы Брадиса (1921 ) использовались в учебных заведениях и в инженерных расчётах, не требующих большой точности. Они содержали мантиссы десятичных логарифмов чисел и тригонометрических функций, натуральные логарифмы и некоторые другие полезные расчётные инструменты.

Литература

    Успенский Я. В. Очерк истории логарифмов. Петроград, 1923. −78 с.

    Выгодский М. Я. Справочник по элементарной математике . - М.: АСТ, 2003. - ISBN 5-17-009554-6

    История математики под редакцией А. П. Юшкевича в трёх томах, М.: Наука.

    Том 1 С древнейших времен до начала Нового времени. (1970)

    Том 2 Математика XVII столетия. (1970)

    Корн Г., Корн Т. Справочник по математике (для научных работников и инженеров) . - М.: Наука, 1973.

    Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления, тома I, II. - М.: Наука, 1960.

12логарифму интенсивности действующего раздражителя (... XX в. впервые в истории психологии попытались экспериментально исследовать... выявление причин и специфических условий возникновения неврозов, выделение в особый...

Итак, перед нами степени двойки. Если взять число из нижней строчки, то можно легко найти степень, в которую придется возвести двойку, чтобы получилось это число. Например, чтобы получить 16, надо два возвести в четвертую степень. А чтобы получить 64, надо два возвести в шестую степень. Это видно из таблицы.

А теперь — собственно, определение логарифма:

Логарифм по основанию a от аргумента x — это степень, в которую надо возвести число a , чтобы получить число x .

Обозначение: log a x = b , где a — основание, x — аргумент, b — собственно, чему равен логарифм.

Например, 2 3 = 8 ⇒ log 2 8 = 3 (логарифм по основанию 2 от числа 8 равен трем, поскольку 2 3 = 8). С тем же успехом log 2 64 = 6, поскольку 2 6 = 64.

Операцию нахождения логарифма числа по заданному основанию называют логарифмированием. Итак, дополним нашу таблицу новой строкой:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
log 2 2 = 1 log 2 4 = 2 log 2 8 = 3 log 2 16 = 4 log 2 32 = 5 log 2 64 = 6

К сожалению, далеко не все логарифмы считаются так легко. Например, попробуйте найти log 2 5. Числа 5 нет в таблице, но логика подсказывает, что логарифм будет лежать где-то на отрезке . Потому что 2 2 < 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

Такие числа называются иррациональными: цифры после запятой можно писать до бесконечности, и они никогда не повторяются. Если логарифм получается иррациональным, его лучше так и оставить: log 2 5, log 3 8, log 5 100.

Важно понимать, что логарифм — это выражение с двумя переменными (основание и аргумент). Многие на первых порах путают, где находится основание, а где — аргумент. Чтобы избежать досадных недоразумений, просто взгляните на картинку:

Перед нами — не что иное как определение логарифма. Вспомните: логарифм — это степень , в которую надо возвести основание, чтобы получить аргумент. Именно основание возводится в степень — на картинке оно выделено красным. Получается, что основание всегда находится внизу! Это замечательное правило я рассказываю своим ученикам на первом же занятии — и никакой путаницы не возникает.

С определением разобрались — осталось научиться считать логарифмы, т.е. избавляться от знака «log». Для начала отметим, что из определения следует два важных факта:

  1. Аргумент и основание всегда должны быть больше нуля. Это следует из определения степени рациональным показателем, к которому сводится определение логарифма.
  2. Основание должно быть отличным от единицы, поскольку единица в любой степени все равно остается единицей. Из-за этого вопрос «в какую степень надо возвести единицу, чтобы получить двойку» лишен смысла. Нет такой степени!

Такие ограничения называются областью допустимых значений (ОДЗ). Получается, что ОДЗ логарифма выглядит так: log a x = b ⇒ x > 0, a > 0, a ≠ 1.

Заметьте, что никаких ограничений на число b (значение логарифма) не накладывается. Например, логарифм вполне может быть отрицательным: log 2 0,5 = −1, т.к. 0,5 = 2 −1 .

Впрочем, сейчас мы рассматриваем лишь числовые выражения, где знать ОДЗ логарифма не требуется. Все ограничения уже учтены составителями задач. Но когда пойдут логарифмические уравнения и неравенства, требования ОДЗ станут обязательными. Ведь в основании и аргументе могут стоять весьма неслабые конструкции, которые совсем необязательно соответствуют приведенным выше ограничениям.

Теперь рассмотрим общую схему вычисления логарифмов. Она состоит из трех шагов:

  1. Представить основание a и аргумент x в виде степени с минимально возможным основанием, большим единицы. Попутно лучше избавиться от десятичных дробей;
  2. Решить относительно переменной b уравнение: x = a b ;
  3. Полученное число b будет ответом.

Вот и все! Если логарифм окажется иррациональным, это будет видно уже на первом шаге. Требование, чтобы основание было больше единицы, весьма актуально: это снижает вероятность ошибки и значительно упрощает выкладки. Аналогично с десятичными дробями: если сразу перевести их в обычные, ошибок будет в разы меньше.

Посмотрим, как работает эта схема на конкретных примерах:

Задача. Вычислите логарифм: log 5 25

  1. Представим основание и аргумент как степень пятерки: 5 = 5 1 ; 25 = 5 2 ;
  2. Составим и решим уравнение:
    log 5 25 = b ⇒ (5 1) b = 5 2 ⇒ 5 b = 5 2 ⇒ b = 2;
  3. Получили ответ: 2.

Задача. Вычислите логарифм:

Задача. Вычислите логарифм: log 4 64

  1. Представим основание и аргумент как степень двойки: 4 = 2 2 ; 64 = 2 6 ;
  2. Составим и решим уравнение:
    log 4 64 = b ⇒ (2 2) b = 2 6 ⇒ 2 2b = 2 6 ⇒ 2b = 6 ⇒ b = 3;
  3. Получили ответ: 3.

Задача. Вычислите логарифм: log 16 1

  1. Представим основание и аргумент как степень двойки: 16 = 2 4 ; 1 = 2 0 ;
  2. Составим и решим уравнение:
    log 16 1 = b ⇒ (2 4) b = 2 0 ⇒ 2 4b = 2 0 ⇒ 4b = 0 ⇒ b = 0;
  3. Получили ответ: 0.

Задача. Вычислите логарифм: log 7 14

  1. Представим основание и аргумент как степень семерки: 7 = 7 1 ; 14 в виде степени семерки не представляется, поскольку 7 1 < 14 < 7 2 ;
  2. Из предыдущего пункта следует, что логарифм не считается;
  3. Ответ — без изменений: log 7 14.

Небольшое замечание к последнему примеру. Как убедиться, что число не является точной степенью другого числа? Очень просто — достаточно разложить его на простые множители. И если такие множители нельзя собрать в степени с одинаковыми показателями, то и исходное число не является точной степенью.

Задача. Выясните, являются ли точными степенями числа: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 — точная степень, т.к. множитель всего один;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 — не является точной степенью, поскольку есть два множителя: 3 и 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 — точная степень;
35 = 7 · 5 — снова не является точной степенью;
14 = 7 · 2 — опять не точная степень;

Заметим также, что сами простые числа всегда являются точными степенями самих себя.

Десятичный логарифм

Некоторые логарифмы встречаются настолько часто, что имеют специальное название и обозначение.

Десятичный логарифм от аргумента x — это логарифм по основанию 10, т.е. степень, в которую надо возвести число 10, чтобы получить число x . Обозначение: lg x .

Например, lg 10 = 1; lg 100 = 2; lg 1000 = 3 — и т.д.

Отныне, когда в учебнике встречается фраза типа «Найдите lg 0,01», знайте: это не опечатка. Это десятичный логарифм. Впрочем, если вам непривычно такое обозначение, его всегда можно переписать:
lg x = log 10 x

Все, что верно для обычных логарифмов, верно и для десятичных.

Натуральный логарифм

Существует еще один логарифм, который имеет собственное обозначение. В некотором смысле, он даже более важен, чем десятичный. Речь идет о натуральном логарифме.

Натуральный логарифм от аргумента x — это логарифм по основанию e , т.е. степень, в которую надо возвести число e , чтобы получить число x . Обозначение: ln x .

Многие спросят: что еще за число e ? Это иррациональное число, его точное значение найти и записать невозможно. Приведу лишь первые его цифры:
e = 2,718281828459...

Не будем углубляться, что это за число и зачем нужно. Просто помните, что e — основание натурального логарифма:
ln x = log e x

Таким образом, ln e = 1; ln e 2 = 2; ln e 16 = 16 — и т.д. С другой стороны, ln 2 — иррациональное число. Вообще, натуральный логарифм любого рационального числа иррационален. Кроме, разумеется, единицы: ln 1 = 0.

Для натуральных логарифмов справедливы все правила, которые верны для обычных логарифмов.


Самое обсуждаемое
Шарль де Голь (различные взгляды на жизнь и деятельность) Франция и европа Шарль де Голь (различные взгляды на жизнь и деятельность) Франция и европа
Мгу экология и природопользование Мгу экология и природопользование
Феодалы в раннем средневековье Феодалы в раннем средневековье


top