Перпендикулярность прямых в пространстве. Визуальный гид (2020). Перпендикулярность прямых - условия перпендикулярности Перпендикулярные прямые – основные сведения

Перпендикулярность прямых в пространстве. Визуальный гид (2020). Перпендикулярность прямых - условия перпендикулярности Перпендикулярные прямые – основные сведения

Теорема. Из точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой.

Доказательство. Пусть A – точка, не лежащая на данной прямой a (рис. 56, а). Докажем, что из точки A можно провести перпендикуляр к прямой a. Мысленно перегнем плоскость по прямой a (рис. 56, б) так, чтобы полуплоскость с границей a, содержащая точку A, наложилась на другую полуплоскость. При этом точка Aналожится на некоторую точку. Обозначим ее буквой B. Разогнем плоскость и проведем через точки A и Bпрямую.

Пусть H – точка пересечения прямых AB и a (рис. 56, в). При повторном перегибании плоскости по прямой aточка H останется на месте. Поэтому луч HA наложится на луч HB, и, следовательно, угол 1 совместится с углом 2. Таким образом, ∠1 = ∠2. Так как углы 1 и 2 – смежные, то их сумма равна 180°, поэтому каждый из них – прямой. Следовательно, отрезок AH – перпендикуляр к прямой a. Теорема доказана.

26. Докажите теорему о единственности перпендикуляра к прямой. (Рис.57 в учебнике)

Теорема. Из точки, не лежащей на прямой, нельзя провести два перпендикуляра к этой прямой.

Доказательство. Пусть A – точка, не лежащая на данной прямой a (см. рис. 56, а). Докажем, что из точки Aнельзя провести два перпендикуляра к прямой a. Предположим, что из точки A можно провести два перпендикуляра AH и AK к прямой a (рис. 57). Мысленно перегнем плоскость по прямой a так, чтобы полуплоскость с границей a, содержащая точку A, наложилась на другую полуплоскость. При перегибании точки H и K остаются на месте, точка A накладывается на некоторую точку. Обозначим ее буквой B. При этом отрезки AH и AK накладываются на отрезки BH и BK.

Углы AHB и AKB – развернутые, так как каждый из них равен сумме двух прямых углов. Поэтому точки A, Hи B лежат на одной прямой и также точки A, K и B лежат на одной прямой.

Таким образом, мы получили, что через точки A и B проходят две прямые AH и AK. Но этого не может быть. Следовательно, наше предположение неверно, а значит, из точки A нельзя провести два перпендикуляра к прямой a. Теорема доказана.

http://mthm.ru/geometry7/perpendicular

В статье рассматривается вопрос о перпендикулярных прямых на плоскости и трехмерном пространстве. Определение перпендикулярных прямых и их обозначения с приведенными примерами подробно разберем. Рассмотрим условия применения необходимого и достаточного условия перпендикулярности двух прямых и подробно рассмотрим на примере.

Угол между пересекающимися прямыми в пространстве может быть прямым. Тогда говорят, что данные прямые перпендикулярные. Когда угол между скрещивающимися прямыми прямой, тогда прямые также являются перпендикулярными. Отсюда следует, что перпендикулярные прямые на плоскости пересекающиеся, а перпендикулярные прямые пространства могут быть пересекающимися и скрещивающимися.

То есть понятия «прямые a и b перпендикулярны» и «прямые b и a перпендикулярны» считаются равноправными. Отсюда и взялось понятие взаимно перпендикулярные прямые. Обобщив вышесказанное, рассмотрим определение.

Определение 1

Две прямые называют перпендикулярными, если угол при их пересечении дает 90 градусов.

Перпендикулярность обозначается « ⊥ », а запись принимает вид a ⊥ b , что значит, прямая a перпендикулярна прямой b .

Например, перпендикулярными прямыми на плоскости могут быть стороны квадрата с общей вершиной. В трехмерном пространстве прямые O x , O z , O y перпендикулярны попарно: O x и O z , O x и O y , O y и O z .

Перпендикулярность прямых – условия перпендикулярности

Свойства перпендикулярности необходимо знать, так как большинство задач сводится к его проверке для последующего решения. Бывают случаи, когда о перпендикулярности идет речь еще в условии задания или когда необходимо пользоваться доказательством. Для того, чтобы доказать перпендикулярность достаточно, чтобы угол между прямыми был прямым.

Для того, чтобы определить их перпендикулярность при известных уравнениях прямоугольной системы координат, необходимо применить необходимое и достаточное условие перпендикулярности прямых. Рассмотрим формулировку.

Теорема 1

Для того, чтобы прямые a и b были перпендикулярными, необходимо и достаточно, чтобы направляющий вектор прямой обладал перпендикулярностью относительно направляющего вектора заданной прямой b .

Само доказательство основывается на определении направляющего вектора прямой и на определении перпендикулярности прямых.

Доказательство 1

Пусть введена прямоугольная декартова система координат О х у с заданными уравнениями прямой на плоскости, которые определяют прямые a и b . Направляющие векторы прямых a и b обозначим a → и b → . Из уравнения прямых a и b необходимым и достаточным условием является перпендикулярность векторов a → и b → . Это возможно только при скалярном произведении векторов a → = (a x , a y) и b → = (b x , b y) равном нулю, а запись имеет вид a → , b → = a x · b x + a y · b y = 0 . Получим, что необходимым и достаточным условием перпендикулярности прямых a и b , находящихся в прямоугольной системе координат О х у на плоскости, является a → , b → = a x · b x + a y · b y = 0 , где a → = (a x , a y) и b → = b x , b y - это направляющие векторы прямых a и b .

Условие применимо, когда необходимо найти координаты направляющих векторов или при наличии канонических или параметрических уравнений прямых на плоскости заданных прямых a и b .

Пример 1

Заданы три точки A (8 , 6) , B (6 , 3) , C (2 , 10) в прямоугольной системе координат О х у. Определить, прямые А В и А С перпендикулярны или нет.

Решение

Прямые А В и А С имеют направляющие векторы A B → и A C → соответственно. Для начала вычислим A B → = (- 2 , - 3) , A C → = (- 6 , 4) . Получим, что векторы A B → и A C → перпендикулярны из свойства о скалярном произведении векторов, равном нулю.

A B → , A C → = (- 2) · (- 6) + (- 3) · 4 = 0

Очевидно, что необходимое и достаточное условие выполнимо, значит, А В и А С перпендикулярны.

Ответ: прямые перпендикулярны.

Пример 2

Определить, заданные прямые x - 1 2 = y - 7 3 и x = 1 + λ y = 2 - 2 · λ перпендикулярны или нет.

Решение

a → = (2 , 3) является направляющим вектором заданной прямой x - 1 2 = y - 7 3 ,

b → = (1 , - 2) является направляющим вектором прямой x = 1 + λ y = 2 - 2 · λ .

Перейдем к вычислению скалярного произведения векторов a → и b → . Выражение будет записано:

a → , b → = 2 · 1 + 3 · - 2 = 2 - 6 ≠ 0

Результат произведения не равен нулю, можно сделать вывод, что векторы не перпендикулярны, значит и прямые также не перпендикулярны.

Ответ: прямые не перпендикулярны.

Необходимое и достаточное условие перпендикулярности прямых a и b применяется для трехмерного пространства, записывается в виде a → , b → = a x · b x + a y · b y + a z · b z = 0 , где a → = (a x , a y , a z) и b → = (b x , b y , b z) являются направляющими векторами прямых a и b .

Пример 3

Проверить перпендикулярность прямых в прямоугольной системе координат трехмерного пространства, заданные уравнениями x 2 = y - 1 = z + 1 0 и x = λ y = 1 + 2 · λ z = 4 · λ

Решение

Знаменатели из канонических уравнений прямых считаются координатами направляющего вектора прямой. Координаты направляющего вектора из параметрического уравнения – коэффициенты. Отсюда следует, что a → = (2 , - 1 , 0) и b → = (1 , 2 , 4) являются направляющими векторами заданных прямых. Для выявления их перпендикулярности найдем скалярное произведение векторов.

Выражение примет вид a → , b → = 2 · 1 + (- 1) · 2 + 0 · 4 = 0 .

Векторы перпендикулярны, так как произведение равно нулю. Необходимое и достаточное условие выполнено, значит прямые также перпендикулярны.

Ответ: прямые перпендикулярны.

Проверка перпендикулярности может проводится, исходя из других необходимых и достаточных условий перпендикулярности.

Теорема 2

Прямые a и b на плоскости считаются перпендикулярными при перпендикулярности нормального вектора прямой a с вектором b , это и есть необходимое и достаточное условие.

Доказательство 2

Данное условие применимо, когда уравнения прямых дают быстрое нахождение координат нормальных векторов заданных прямых. То есть при наличии общего уравнения прямой вида A x + B y + C = 0 , уравнения прямой в отрезках вида x a + y b = 1 , уравнения прямой с угловым коэффициентом вида y = k x + b координаты векторов возможно найти.

Пример 4

Выяснить, перпендикулярны ли прямые 3 x - y + 2 = 0 и x 3 2 + y 1 2 = 1 .

Решение

Исходя их уравнений, необходимо найти координаты нормальных векторов прямых. Получим, что n α → = (3 , - 1) - это нормальный вектор для прямой 3 x - y + 2 = 0 .

Упростим уравнение x 3 2 + y 1 2 = 1 до вида 2 3 x + 2 y - 1 = 0 . Теперь четко видны координаты нормального вектора, которые запишем в такой форме n b → = 2 3 , 2 .

Векторы n a → = (3 , - 1) и n b → = 2 3 , 2 будут перпендикулярными, так как их скалярное произведение даст в итоге значение равное 0 . Получим n a → , n b → = 3 · 2 3 + (- 1) · 2 = 0 .

Необходимое и достаточное условие было выполнено.

Ответ: прямые перпендикулярны.

Когда прямая a на плоскости определена при помощи уравнения с угловым коэффициентом y = k 1 x + b 1 , а прямая b - y = k 2 x + b 2 , отсюда следует, что нормальные векторы будут иметь координаты (k 1 , - 1) и (k 2 , - 1) . Само условие перпендикулярности сводится к k 1 · k 2 + (- 1) · (- 1) = 0 ⇔ k 1 · k 2 = - 1 .

Пример 5

Выяснить, перпендикулярны ли прямые y = - 3 7 x и y = 7 3 x - 1 2 .

Решение

Прямая y = - 3 7 x имеет угловой коэффициент, равный - 3 7 , а прямая y = 7 3 x - 1 2 - 7 3 .

Произведение угловых коэффициентов дает значение - 1 , - 3 7 · 7 3 = - 1 , то есть прямые являются перпендикулярными.

Ответ: заданные прямые перпендикулярны.

Имеется еще одно условие, используемое для определения перпендикулярности прямых на плоскости.

Теорема 3

Для перпендикулярности прямых a и b на плоскости необходимым и достаточным условием является коллинеарность направляющего вектора одной из прямых с нормальным вектором второй прямой.

Доказательство 3

Условие применимо, когда есть возможность нахождения направляющего вектора одной прямой и координат нормального вектора другой. Иначе говоря, одна прямая задается каноническим или параметрическим уравнением, а другая общим уравнением прямой, уравнением в отрезках или уравнением прямой с угловым коэффициентом.

Пример 6

Определить, являются ли заданные прямые x - y - 1 = 0 и x 0 = y - 4 2 перпендикулярными.

Решение

Получаем, что нормальный вектор прямой x - y - 1 = 0 имеет координаты n a → = (1 , - 1) , а b → = (0 , 2) - направляющий вектор прямой x 0 = y - 4 2 .

Отсюда видно, что векторы n a → = (1 , - 1) и b → = (0 , 2) не коллинеарны, потому что условие коллинеарности не выполняется. Не существует такого числа t , чтобы выполнялось равенство n a → = t · b → . Отсюда вывод, что прямые не являются перпендикулярными.

Ответ: прямые не перпендикулярны.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

На этом уроке мы подробно рассмотрим понятие перпендикуляра к прямой и докажем важную теорему.

Вначале вспомним определение перпендикулярных прямых. Далее сформулируем и докажем теорему о двух прямых, перпендикулярных к третьей. Далее дадим определение перпендикуляра к прямой, сформулируем и докажем важную теорему о том, что из любой произвольной точки можно провести единственный перпендикуляр к заданной прямой.

В конце решим несколько задач на пройденную тему.

Для начала вспомним важный факт: две пересекающиеся прямые называются перпендикулярными, если они образуют четыре прямых угла.

Рис. 1. Перпендикулярные прямые

АС⊥ВD, поскольку четыре угла по 90°. Напомним также, что при пересечении любых прямых образуются четыре угла: 2 вертикальных, которые равны между собой, еще пара равных вертикальных углов. a и b - смежные углы. И по теореме о смежных углах a + b = 180°.

Рис. 2. Пересечение прямых

В единственном случае a = b = 90°. В этом случае прямые АС и ВD называются перпендикулярными.

Теорема 1: Две прямые, перпендикулярные к третьей, не пересекаются.

Рис. 3. Чертеж к теореме 1

Отсюда следует, что AA 1 и BB 1 не имеют общих точек. Прямые AA 1 и BB 1 можно продлить бесконечно, но при этом они не пересекутся. В этом заключается смысл теоремы.

Определение: Пусть прямые АН и a перпендикулярны. Мы знаем, что чтобы все четыре угла при этих прямых были по 90°, необходимо, чтобы один из них был прямым. Отрезок АН называют перпендикуляром, проведенным из точки А к прямой a, если прямые АН и a перпендикулярны . При этом точка Н называется основанием перпендикуляра.

Рис. 4. Чертеж к определению перпендикуляра

В данном случае перпендикуляр - это отрезок. Значит, перпендикуляр к прямой - это отрезок.

Теорема 2: Из точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой, и притом только один.

Рис. 5. Чертеж к теореме 2

Существует множество точек, которые не лежат на прямой a. Из любой точки А, не лежащей на данной прямой, можно провести перпендикуляр к прямой. К тому же этот перпендикуляр единственный.

Дано: точка А не принадлежит прямой a.

Доказать: существует единственный отрезок АН, где АН.

Доказательство:

1. Проведем 2 равных угла. ∠АВС =∠МВС или ∠1 = ∠2.

2. Равные углы можно совместить наложением. При этом точка А перейдет в точку A 1 . ВА = ВA 1 (перегибание по прямой ВС).

3. Соединим точки А и A 1 . Получим точку Н. Углы ∠ВНА = ∠3, ∠ВНA 1 = ∠4.

4.

Следовательно, треугольники ВНА = ВНA 1 по первому признаку равенства треугольников, то есть по углу и двум прилежащим сторонам. Из равенства треугольников следует равенство всех элементов. А значит, ∠3 = ∠4. Эти углы лежат против равных сторон. Два смежных равны только в случае, если каждый из них равен по 90°. А значит, АН^ВС. Мы доказали, что из точки А можно провести перпендикуляр к прямой a.

Рис. 6. Чертеж к доказательству теоремы 2(1)

Единственность перпендикуляра, проведенного из точки А к прямой, докажем методом «от противного».

5. Предположим, что из точки А можно провести к прямой a два разных перпендикуляра.

АН ⊥ a, АH 1 ⊥ a.

Рис. 7. Чертеж к доказательству единственности перпендикуляра

Это невозможно, поскольку из разных точек прямой a проведены 2 перпендикуляра, которые имеют общую точку А. Мы получили противоречие, значит, наше предположение неверно. Из точки А можно провести лишь один перпендикуляр к прямой a.

Пример 1: Точки А и С лежат по одну сторону от прямой a. Перпендикуляры АВ и СD к прямой a равны.

1. Докажите, что АВD = ∠CDВ.

2. Найдите ∠АВС, если ∠АDВ = 44°.

Дано: А) АВ⊥ a, CD ⊥ a.

Доказать: ∠ADB = ∠CDB.

Доказательство:

Рис. 8. Чертеж к примеру 1(а)

Доказательство основано на понятии перпендикуляра из точки к прямой. Отсюда следует, что ADB = CDB, что и требовалось доказать.

Дано: Б) АВ⊥ a, CD⊥ a. AB = CD, ∠ADB = 44°. Найти ∠АВС.

Доказательство:

Выполним пояснительный рисунок:

Рис. 9. Чертеж к примеру 1(б)

1. ∆ABD = ∆CDB. (AB = CD, BD - общая, ∠ABD = ∠CDB). Из равенства треугольников следует равенство их соответствующих элементов. AD = CB.

2. ∠ADB = ∠CBD = 44°. Поскольку эти углы лежат против равных сторон AB и CD соответственно.

3. ∠АВС = 90° - 44° = 46°

Ответ: 46°.

На сегодняшнем уроке мы рассмотрели понятие перпендикуляра к прямой и доказали теорему об этом перпендикуляре. На следующем уроке мы познакомимся с медианой, биссектрисой, высотой треугольника.

1. Александров А.Д., Вернер А.Л., Рыжик В.И. и др. Геометрия 7. - М.: Просвещение.

2. Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др. Геометрия 7. 5 изд. - М.: Просвещение.

3. Бутузов В.Ф., Кадомцев С.Б., Прасолова В.В. Геометрия 7 / В.Ф. Бутузов, С.Б. Кадомцев, В.В. Прасолова, под ред. Садовничего В.А. - М.: Просвещение, 2010.

  1. Обобщающий урок по геометрии в 7-м классе ().
  2. Прямая линия, отрезок ().

1. №13(б). Бутузов В.Ф., Кадомцев С.Б., Прасолова В.В. Геометрия 7 / В.Ф. Бутузов, С.Б. Кадомцев, В.В. Прасолова, под ред. Садовничего В.А. - М.: Просвещение, 2010.

2. Один из смежных углов в 3 раза больше другого. Найдите эти углы.

3. Прямые BH и AH взаимно перпендикулярны и ∠BHM = ∠AHC. Докажите, что НМ⊥НС.

4. № 14(г). Бутузов В.Ф., Кадомцев С.Б., Прасолова В.В. Геометрия 7 / В.Ф. Бутузов, С.Б. Кадомцев, В.В. Прасолова, под ред. Садовничего В.А. - М.: Просвещение, 2010.


В этой статье подробно рассмотрим на плоскости и в трехмерном пространстве. Начнем с определения перпендикулярных прямых, покажем обозначения и приведем примеры. После этого приведем необходимое и достаточное условие перпендикулярности двух прямых и детально разберем решения характерных задач.

Навигация по странице.

Перпендикулярные прямые – основные сведения.

Пример.

В прямоугольной системе координат Oxy заданы три точки . Перпендикулярны ли прямые АВ и АС ?

Решение.

Векторы и являются направляющими векторами прямых АВ и АС . Обратившись к статье , вычисляем . Векторы и перпендикулярны, так как . Таким образом, выполняется необходимое и достаточное условие перпендикулярности прямых АВ и АС . Следовательно, прямые АВ и АС перпендикулярны.

Ответ:

Да, прямые перпендикулярны.

Пример.

Являются ли прямые и перпендикулярными?

Решение.

Направляющий вектор прямой , а - направляющий вектор прямой . Вычислим скалярное произведение векторов и : . Оно отлично от нуля, следовательно, направляющие векторы прямых не перпендикулярны. То есть, не выполняется условие перпендикулярности прямых, поэтому, исходные прямые не перпендикулярны.

Ответ:

Нет, прямые не перпендикулярны.

Аналогично, необходимое и достаточное условие перпендикулярности прямых a и b в прямоугольной системе координат Oxyz в трехмерном пространстве имеет вид , где и - направляющие векторы прямых a и b соответственно.

Пример.

Перпендикулярны ли прямые, заданные в прямоугольной системе координат Oxyz в трехмерном пространстве уравнениями и ?

Решение.

Числа, стоящие в знаменателях канонических уравнений прямой в пространстве , являются соответствующими координатами направляющего вектора прямой. А координатами направляющего вектора прямой, которая задана параметрическими уравнениями прямой в пространстве , являются коэффициенты при параметре. Таким образом, и - направляющие векторы заданных прямых. Выясним, перпендикулярны ли они: . Так как скалярное произведение равно нулю, то эти векторы перпендикулярны. Значит, выполняется условие перпендикулярности заданных прямых.

Ответ:

Прямые перпендикулярны.

Для проверки перпендикулярности двух прямых на плоскости существуют другие необходимые и достаточные условия перпендикулярности.

Теорема.

Для перпендикулярности прямых a и b на плоскости необходимо и достаточно, чтобы нормальный вектор прямой a был перпендикулярен нормальному вектору прямой b .

Озвученное условие перпендикулярности прямых удобно использовать, если по заданным уравнениям прямых легко находятся координаты нормальных векторов прямых. Этому утверждению отвечает общее уравнение прямой вида , уравнение прямой в отрезках и уравнение прямой с угловым коэффициентом .

Пример.

Убедитесь, что прямые и перпендикулярны.

Решение.

По заданным уравнениям прямых легко найти координаты нормальных векторов этих прямых. – нормальный вектор прямой . Перепишем уравнение в виде , откуда видны координаты нормального вектора этой прямой: .

Векторы и перпендикулярны, так как их скалярное произведение равно нулю: . Таким образом, выполняется необходимое и достаточное условие перпендикулярности заданных прямых, то есть, они действительно перпендикулярны.

В частности, если прямую a на плоскости определяет уравнение прямой с угловым коэффициентом вида , а прямую b – вида , то нормальные векторы этих прямых имеют координаты и соответственно, а условие перпендикулярности этих прямых сводится к следующему соотношению между угловыми коэффициентами .

Теорема . Из точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой .

Доказательство . Пусть A – точка, не лежащая на данной прямой a (рис. 56, а ). Докажем, что из точки A можно провести перпендикуляр к прямой a . Мысленно перегнем плоскость по прямой a (рис. 56, б ) так, чтобы полуплоскость с границей a , содержащая точку A , наложилась на другую полуплоскость. При этом точка A наложится на некоторую точку. Обозначим ее буквой B . Разогнем плоскость и проведем через точки A и B прямую.

Пусть H – точка пересечения прямых AB и a (рис. 56, в ). При повторном перегибании плоскости по прямой a точка H останется на месте. Поэтому луч HA наложится на луч HB , и, следовательно, угол 1 совместится с углом 2. Таким образом, ∠1 = ∠2. Так как углы 1 и 2 – смежные, то их сумма равна 180°, поэтому каждый из них – прямой. Следовательно, отрезок AH – перпендикуляр к прямой a . Теорема доказана.

Докажем теперь.

Теорема. Из точки, не лежащей на прямой, нельзя провести два перпендикуляра к этой прямой .

Доказательство. Пусть A – точка, не лежащая на данной прямой a (см. рис. 56, а ). Докажем, что из точки A нельзя провести два перпендикуляра к прямой a . Предположим, что из точки A можно провести два перпендикуляра AH и AK к прямой a (рис. 57). Мысленно перегнем плоскость по прямой a так, чтобы полуплоскость с границей a , содержащая точку A , наложилась на другую полуплоскость. При перегибании точки H и K остаются на месте, точка A накладывается на некоторую точку. Обозначим ее буквой B . При этом отрезки AH и AK накладываются на отрезки BH и BK .

Углы AHB и AKB – развернутые, так как каждый из них равен сумме двух прямых углов. Поэтому точки A, H и B лежат на одной прямой и также точки A, K и B лежат на одной прямой.

Таким образом, мы получили, что через точки A и B проходят две прямые AH и AK . Но этого не может быть. Следовательно, наше предположение неверно, а значит, из точки A нельзя провести два перпендикуляра к прямой a . Теорема доказана.

Замечание 1. Теоремы о существовании и о единственном перпендикуляре к прямой можно объединить в одну теорему:

из точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой, и притом только один.

Замечание 2. Из теоремы о единственности перпендикуляра к прямой следует, что

две прямые, перпендикулярные к одной и той же прямой, не пересекаются.

Предположим, что две прямые, перпендикулярные к прямой a , пересекаются в некоторой точке M . Точка M не может лежать на прямой a , так как в этом случае образуется развернутый угол, больший 180° (рис. 58, а ). Если же точка M не лежит на прямой a (рис. 58, б ), то из точки M будут проведены два перпендикуляра к прямой a , что невозможно. Таким образом, две прямые, перпендикулярные к прямой a , не пересекаются.


Самое обсуждаемое
Шарль де Голь (различные взгляды на жизнь и деятельность) Франция и европа Шарль де Голь (различные взгляды на жизнь и деятельность) Франция и европа
Мгу экология и природопользование Мгу экология и природопользование
Феодалы в раннем средневековье Феодалы в раннем средневековье


top