Какими свойствами обладает потенциальная энергия электрического поля. Электростатика: демонстрационный эксперимент. Сущность понятия потенциальной разницы

Какими свойствами обладает потенциальная энергия электрического поля. Электростатика: демонстрационный эксперимент. Сущность понятия потенциальной разницы

Понятие энергии исключительно полезно для решения задач механики. Прежде всего энергия сохраняется и поэтому служит важной характеристикой явлений природы. Используя представления об энергии, многие задачи удается решить, не имея детальных сведений о силах или в случае, когда применение законов Ньютона потребовало бы сложных вычислений.

Энергетическим подходом можно воспользоваться и при изучении электрических явлений, и здесь он оказывается чрезвычайно полезным: позволяет не только обобщить закон сохранения энергии, но и в новом аспекте увидеть электрические явления, а также служит средством более просто находить решения, чем путем рассмотрения сил и электрических полей.

Потенциальную энергию можно определить лишь для консервативных сил; работа такой силы по перемещению частицы между двумя точками не зависит от выбранного пути.
Легко видеть, что электростатическая сила является консервативной: сила, с которой один точечный заряд действует на другой, определяется законом Кулона: F = kQ 1 Q 2 /r 2 ; здесь та же обратно пропорциональная зависимость от квадрата расстояния, что и в законе всемирного тяготения: F = Gm 1 m 2 /r 2 . Такие силы консервативны. Сила, действующая на выбранный заряд со стороны любого распределения зарядов, может быть записана в виде суммы кулоновских сил; следовательно, и сила, создаваемая произвольным распределением зарядов, консервативна. А это позволяет ввести потенциальную энергию электростатического поля.

Разность потенциальных энергий точечного заряда q в двух различных точках электрического поля можно определить как работу, совершаемую внешними силами по перемещению заряда (против действия электрической силы) из одной точки в другую. Это равносильно определению изменения потенциальной энергии заряда в поле как взятой с обратным знаком работы, совершаемой самим полем по перемещению заряда из одной точки в другую.

Рассмотрим для примера электрическое поле между двумя пластинами с равным по величине и противоположным по знаку зарядом. Пусть размеры пластин велики по сравнению с расстоянием между ними, и поэтому поле между пластинами можно считать однородным (рис. 24.1).
Поместим в точку а вблизи положительно заряженной пластины точечный положительный заряд q . Электрическая сила, действующая на заряд, будет стремиться переместить его к отрицательной пластине (в точку b ), совершая работу по переносу заряда. Под действием силы заряд приобретет ускорение и его кинетическая энергия возрастет; при этом потенциальная энергия уменьшится на величину работы, совершенной электрической силой по перемещению заряда из точки a в точку b . Согласно закону сохранения энергии, потенциальная энергия заряда в электрическом поле перейдет в кинетическую энергию, но полная энергия останется неизменной. Заметим, что положительный заряд q обладает наибольшей потенциальной энергией U вблизи положительной пластины (в этой точке его способность совершать работу над другим телом или системой максимальна). Для отрицательного заряда справедливо обратное: его потенциальная энергия будет максимальна вблизи отрицательной пластины.

Напряженность электрического поля мы определяли как силу, действующую на единичный заряд; аналогично удобно ввести электрический потенциал (или просто потенциал, если это не вызывает недоразумений) как потенциальную энергию единичного заряда. Электрический потенциал обозначается символом V ; итак, если в некоторой точке a точечный заряд q обладает потенциальной энергией U a , то электрический потенциал в этой точке равен V a = U a /q .
Реально мы измеряем только изменение потенциальной энергии. Соответственно фактически можно измерить лишь разность потенциалов между двумя точками (например, точками a и b на рис. 24.1). Если работа электрических сил по перемещению заряда от точки a в точку b есть W ba (а разность потенциальных энергий соответственно равна этой величине с обратным знаком), то для разности потенциалов можно написать

Единицей электрического потенциала (и разности потенциалов) является джоуль на кулон (Дж/Кл); этой единице присвоено наименование вольт (В) в честь Алессандро Вольты (1745-1827) (он известен как изобретатель электрической батареи); 1 В = 1 Дж/Кл. Заметим, что, согласно данному определению, положительно заряженная пластина на рис. 24.1 имеет более высокий потенциал, чем отрицательная. Таким образом, положительно заряженное тело будет стремиться перейти из точки с более высоким потенциалом в точку с более низким потенциалом, отрицательно заряженное тело - наоборот. Разность потенциалов часто называют электрическим напряжением.

Потенциал в данной точке V a зависит от выбора «нуля» потенциала; как и в случае потенциальной энергии, нулевой уровень может выбираться произвольно, поскольку измерить можно лишь изменение потенциальной энергии (разность потенциалов). Часто за нулевой принимают потенциал земли или проводника, соединенного с землей, и остальные значения потенциалов отсчитывают относительно «земли». (Например, говоря, что потенциал в какой-то точке равен 50 В, имеют в виду, что разность потенциалов между этой точкой и землей равна 50 В.) В иных случаях, как мы увидим, удобно считать нулевым потенциал на бесконечности.

Поскольку электрический потенциал определяется как потенциальная энергия единичного заряда, изменение потенциальной энергии заряда q при перемещении его из точки a в точку b равно

Δ U = U b - U a = qV ba

Другими словами, когда заряд q перемещается между точками с разностью потенциалов V ba , его потенциальная энергия изменяется на величину qV ba . Если, например, разность потенциалов между пластинами на рис. 24.1 составляет 6 В, то заряд 1 Кл, перемещенный (внешней силой) из точки b в точку a , увеличит свою потенциальную энергию на (1 Кл) (6 В) = 6 Дж. (Перемещаясь же из a в b , он потеряет потенциальную энергию 6 Дж.) Аналогично энергия заряда 2 Кл увеличится на 12 Дж и т. п. Таким образом, электрический потенциал служит мерой изменения потенциальной энергии электрического заряда в данной ситуации. А поскольку потенциальная энергия - это способность совершать работу, электрический потенциал служит мерой той работы, которую может совершить данный заряд. Количество работы зависит как от разности потенциалов, так и от величины заряда.

Чтобы лучше понять смысл электрического потенциала, проведем аналогию с гравитационным полем. Пусть камень падает с вершины скалы. Чем выше скала, тем большей потенциальной энергией обладает камень и тем больше будет его кинетическая энергия, когда он долетит до подножия скалы. Величина кинетической энергии и соответственно работа, которую может совершить камень, зависят от высоты скалы и от массы камня. Точно так же и в электрическом поле изменение потенциальной энергии (и работа, которую можно совершить) зависит от разности потенциалов (эквивалентной высоте скалы) и заряда (эквивалентного массе).

Используемые на практике источники электроэнергии - батареи, электрогенераторы - создают определенную разность потенциалов. Количество энергии, отбираемой от источника, зависит от величины переносимого заряда.
Рассмотрим, например, автомобильную фару, соединенную с аккумулятором, разность потенциалов на зажимах которого равна 12 В. Количество энергии, преобразуемой фарой в свет (и, конечно, в тепло), пропорционально заряду, протекшему через фару, что в свою очередь зависит от того, как долго включена фара. Если за некоторое время через фару прошел заряд 5,0 Кл, то преобразованная фарой энергия составит (5,0 Кл)*(12,0 В) = 60 Дж. Если оставить фару включенной вдвое дольше, то через нее пройдет заряд 10,0 Кл, и количество преобразованной энергии составит (10,0 Кл)*(12,0 В) = 120 Дж.
Эффекты, обусловленные тем или иным распределением зарядов, можно описать как с помощью напряженности электрического поля, так и через электрический потенциал. Между напряженностью поля и потенциалом существует тесная связь. Рассмотрим вначале эту связь для случая однородного электрического поля, например поля между пластинами на рис. 24.1 с разностью потенциалов V ba . Работа электрического поля по перемещению положительного заряда q из точки a в точку b равна

W = - qV ba

Обратим внимание на то, что величина V ba = V b - V a отрицательна (V ba a выше, чем в точке b (и положителен по отношению к потенциалу в точке b ). Поэтому совершаемая полем работа положительна.
С другой стороны, работа равна произведению силы на перемещение, а сила, действующая на заряд q , есть F = qE , где Е - напряженность однородного электрического поля между пластинами. Таким образом,

W = Fd = qEd

где d - расстояние между точками a и b (вдоль силовой линии). Приравняв эти выражения для работы, получим

- qV ba = qEd

V b - V a = V ba = - Ed (поле E однородно).

Знак минус в правой части указывает просто на то, что V a V b , т.е. потенциал положительной пластины выше, чем отрицательной, как мы уже говорили. Положительные заряды стремятся двигаться из области с высоким потенциалом в область с низким потенциалом. Отсюда можно найти Е :

Е = - V ba /d .

Из последнего равенства видно, что напряженность электрического поля можно измерять как в вольтах на метр (В/м), так и в ньютонах на кулон (Н/Кл). Эти единицы эквивалентны между собой: 1 Н/Кл = 1 Н·м/Кл·м = 1 Дж/Кл·м = 1 В/м.

Чтобы перейти к общему случаю неоднородного электрического поля, вспомним соотношение между силой F и потенциальной энергией U , обусловленной этой силой. Разность потенциальных энергий в двух точках пространства a и b определится формулой

где dl - бесконечно малое перемещение, а интеграл берется вдоль произвольной траектории между точками a и b . В случае электрического поля нас больше интересует разность не потенциальных энергий, а потенциалов:

V ba = V b - V a = (U b - U a)/q

Напряженность электрического поля Е в любой точке пространства определяется отношением силы к заряду: Е = F/q . Подставляя эти два равенства в формулу, получим

Это и есть общее соотношение, связывающее напряженность электрического поля с разностью потенциалов.

Когда поле однородно, например, на рис. 24.1 вдоль траектории, параллельной силовым линиям, от точки a у положительной пластины до точки b у отрицательной пластины (поскольку направления E и dl всюду совпадают) имеем

где d - расстояние вдоль силовой линии между точками a и b . И вновь знак минус в правой части свидетельствует лишь о том, что на рис. 24.1 V a > V b .

Продолжение следует. Коротко о следующей публикации:

Замечания и предложения принимаются и приветствуются!

Потенциальные поля. Можно доказать, что работа любого электростатического поля при перемещении заряженного тела из одной точки в другую не зависит от формы траектории, гак же как и работа однородного поля. На замкнутой траектории работа электростатического поля всегда равна нулю. Поля, обладающие таким свойством, называют потенциальными. Потенциальный характер, в частности, имеет электростатическое поле точечного заряда.

Работу потенциального поля можно выразить через изменение потенциальной энергии. Формула справедлива для произвольного электростатического поля. Но только в случае однородного поля энергия выражается формулой (8.19)

Потенциал. Потенциальная энергия заряда в электростатическом поле пропорциональназаряду. Это справедливо как для однородного поля (см. формулу 8.19), гак и для любого другого. Следовательно, отношение потенциальной энергии к заряду не зависит от помещенного в поле заряда.

Это позволяет ввести новую количественную характеристику поля - потенциал. Потенциалом электростатического поля называют отношение потенциальной энергии заряда в поле к этому заряду.

Согласно данному определению потенциал равен:

Напряженность поля является вектором и представляет собой силовую характеристику поля; она определяет силу, действующую на заряд в данной точке поля. Потенциал - скаляр, это энергетическая характеристика поля; он определяет потенциальную энергию заряда в данной точке поля.

Если в качестве нулевого уровня потенциальной энергии, а значит, и потенциала принять отрицательно заряженную пластину (рис. 124), то согласно формулам (8.19 и 8.20) потенциал однородного поля равен:

Разность потенциалов. Подобно потенциальной энергии, значение потенциала в данной точке зависит от выбора нулевого уровня для отсчета потенциала. Практическое значение имеет не сам потенциал в точке, а изменение потенциала, которое не зависит от выбора нулевого уровня отсчета потенциала.

Так как потенциальная энергия то работа равна:

В дальнейшем вместо изменения потенциала представляющего собой разность значений потенциала в конечной и начальной точках траектории, будем использовать другую величину - разность потенциалов. Под разностью потенциалов понимают разность значений потенциала в начальной и конечной точках траектории:

Часто разность потенциалов называют также напряжением.

С разностью потенциалов, или напряжением удобнее иметь дело, чем с изменением потенциала особенно при изучении электрического тока.

Согласно формулам (8.22) и (8.23) разность потенциалов

Таким образом, разность потенциалов (напряжение) между двумя точками равна отношению работы поля по перемещению заряда из начальной точки в конечную к этому заряду.

Зная напряжение в осветительной сети, мы тем самым знаем работу, которую электрическое поле может совершить при перемещении единичного заряда от одного контакта розетки к другому по любой электрической цепи. С понятием разности потенциалов мы будем иметь дело на протяжении всего курса физики.

Единица разности потенциалов. Единицу разности потенциалов устанавливают с помощью формулы (8.24). В Международной системе единиц работу выражают в джоулях, а заряд - в кулонах. Поэтому разность потенциалов между двумя точками равна единице, если при перемещении заряда в 1 Кл из одной точки в другую электрическое поле совершает работу в 1 Дж. Эту единицу называют вольтом

1. Какие поля называют потенциальными? 2. Как связано изменение потенциальной энергии с работой? 3. Чему равна потенциальная энергия заряженной частицы в однородном электрическом поле? 4. Дайте определение потенциала. Чему равна разность потенциалов между двумя точками поля?

Из механики известно, что работа консервативных сил связана с изменением потенциальной энергии. Система "заряд - электростатическое поле" обладает потенциальной энергией (энергией электростатического взаимодействия). Поэтому, если не учитывать взаимодействие заряда с гравитационным полем и окружающей средой, то работа, совершаемая при перемещении заряда в электростатическом поле, равна изменению потенциальной энергии заряда, взятому с противоположным знаком:

Если W p2 = 0, то в каждой точке электростатического поля потенциальная энергия заряда q 0 равна работе, которая была бы совершена при перемещении заряда q 0 из данной точки в точку с нулевой энергией.

Пусть электростатическое поле создано в некоторой области пространства положительным зарядом q (рис. 1).

Будем помещать в точку М этого поля различные пробные положительные заряды q 0 . Потенциальная энергия их различна, но отношение для данной точки поля и служит характеристикой поля, называемой потенциалом поля в данной точке:

Единицей потенциала в СИ является вольт (В) или джоуль на кулон (Дж/Кл).

Потенциалом электростатического поля в данной точке называют скалярную физическую величину, характеризующую энергетическое состояние поля в данной точке пространства и численно равную отношению потенциальной энергии, которой обладает пробный положительный заряд, помещенный в эту точку, к значению заряда.

Потенциал - это энергетическая характеристика поля в отличие от напряженности поля, являющейся силовой характеристикой поля.

Необходимо отметить, что потенциальная энергия заряда в данной точке поля, а значит, и потенциал зависят от выбора нулевой точки. Нулевой эта точка называется потому, что потенциальную энергию (соответственно потенциал) заряда, помещенного в эту точку поля, уславливаются считать равной нулю.

Нулевой уровень потенциальной энергии выбирается произвольно, поэтому потенциал можно определить только с точностью до некоторой постоянной, значение которой зависит от того, в какой точке пространства выбрано его нулевое значение.

В технике принято считать нулевой точкой любую заземленную точку, т.е. соединенную проводником с землей. В физике за начало отсчета потенциальной энергии (и потенциала) принимается любая точка, бесконечно удаленная от зарядов, создающих поле. Если нулевая точка выбрана, то потенциальная энергия (соответственно и потенциал в данной точке) заряда q 0 становится определенной величиной.

На расстоянии r от точечного заряда q, создающего поле, потенциал определяется формулой

При указанном выше выборе нулевой точки потенциал в любой точке поля, создаваемого положительным зарядом q, положителен, а поля, создаваемого отрицательным зарядом, отрицателен:

По этой формуле можно рассчитывать потенциал поля, образованного равномерно заряженной проводящей сферой радиусом R в точках, находящихся на поверхности сферы и вне ее. Внутри сферы потенциал такой же, как и на поверхности, т.е.

Если электростатическое поле создается системой зарядов, то имеет место принцип суперпозиции : потенциал в любой точке такого поля равен алгебраической сумме потенциалов, создаваемых в этой точке каждым зарядом в отдельности:

Зная потенциал поля в данной точке, можно рассчитать потенциальную энергию заряда q0 помещенного в эту точку: W p1 = q 0 . Если положить, что W p2 = 0, то из уравнения (1) будем иметь

Потенциальная энергия заряда q 0 в данной точке поля будет равна работе сил электростатического поля по перемещению заряда q0 из данной точки в нулевую. Из последней формулы имеем

Лекция 6. Потенциал электрического поля. Контрольная работа № 2

Потенциал относится к самым сложным понятиям электростатики. Учащиеся выучивают определение потенциала электростатического поля, решают многочисленные задачи, но у них нет ощущения потенциала, они с трудом соотносят теорию с реальностью. Поэтому роль учебного эксперимента в формировании понятия потенциала весьма высока. Нужны такие опыты, которые, с одной стороны, иллюстрировали бы абстрактные теоретические представления о потенциале, а с другой, показывали полную обоснованность экспериментом введения понятия потенциала. Стремиться к особой точности количественных результатов в этих опытах скорее вредно, чем полезно.

6.1. Потенциальность электростатического поля

На изолирующей подставке укрепим проводящее тело и зарядим его. На длинной изолированной нити подвесим лёгкий проводящий шарик и сообщим ему пробный заряд, одноимённый с зарядом тела. Шарик оттолкнётся от тела и из положения 1 перейдёт в положение 2. Так как высота шарика в поле тяготения увеличилась на h , потенциальная энергия его взаимодействия с Землёй возросла на mgh. Значит, электрическое поле заряженного тела совершило над пробным зарядом некоторую работу.

Повторим опыт, но в начальный момент не просто отпустим пробный шарик, а толкнём его в произвольном направлении, сообщив ему некоторую кинетическую энергию. При этом обнаружим, что двигаясь из положения 1 по сложной траектории, шарик в конечном итоге остановится в положении 2 . Сообщённая шарику в начальный момент кинетическая энергия, очевидно, израсходовалась на преодоление сил трения при движении шарика, а электрическое поле совершило над шариком ту же работу, что и в первом случае. В самом деле, если уберём заряженное тело, то тот же самый толчок пробного шарика приводит к тому, что из положения 2 он возвращается в положение 1 .

Таким образом, опыт наводит на мысль, что работа электрического поля над зарядом не зависит от траектории движения заряда, а определяется лишь положениями её начальной и конечной точек. Иными словами, на замкнутой траектории работа электростатического поля всегда равна нулю. Поля, обладающие таким свойством, называются потенциальными.

6.2. Потенциальность центрального поля

Опыт показывает, что в электростатическом поле, создаваемом заряженным проводящим шаром, действующая на пробный заряд сила всегда направлена от центра заряженного шара, она монотонно уменьшается с увеличением расстояния и на равных расстояниях от него имеет одинаковые значения. Такое поле называется центральным . Пользуясь рисунком, нетрудно убедиться, что центральное поле потенциально.

6.3. Потенциальная энергия заряда в электростатическом поле

Гравитационное поле, как и электростатическое, потенциально. Кроме того, математическая запись закона всемирного тяготения совпадает с записью закона Кулона. Поэтому при исследовании электростатического поля имеет смысл опираться на аналогию между гравитационным и электростатическим полями.

В небольшой области вблизи поверхности Земли гравитационное поле можно считать однородным (рис. а ).

На тело массой m в этом поле действует постоянная по модулю и направлению сила f = тg . Если предоставленное самому себе тело падает из положения 1 в положение 2 , то сила тяготения совершает работу A = fs = mgs = mg (h 1 – h 2).

Это же самое мы можем сказать иначе. Когда тело находилось в положении 1 , система Земля–тело обладала потенциальной энергией (т.е. способностью совершить работу) W 1 = mgh 1 . Когда тело перешло в положение 2 , рассматриваемая система стала обладать потенциальной энергией W 2 = mgh 2 . Совершённая при этом работа равна разности потенциальных энергий системы в конечном и начальном состояниях, взятой с обратным знаком: А = – (W 2 – W 1).

Обратимся теперь к электрическому полю, которое, напомним, как и гравитационное, является потенциальным. Представим, что силы тяжести нет, а вместо поверхности Земли имеется плоская проводящая пластина, заряженная (для определённости) отрицательно (рис. б ). Введём координатную ось Y и над пластиной расположим положительный заряд q . Понятно, что, поскольку сам по себе заряд не существует, над пластиной находится какое-то тело определённой массы, несущее электрический заряд. Но, поскольку мы считаем поле тяжести отсутствующим, то и принимать во внимание массу заряженного тела не будем.

Итак, на положительный заряд q со стороны отрицательно заряженной плоскости действует сила притяжения f = qE , где E – напряжённость электрического поля. Так как электрическое поле однородно, то во всех его точках на заряд действует одна и та же сила. Если заряд перемещается из положения 1 в положение 2 , то электростатическая сила совершает над ним работу А = fs = qE s = qE (y 1 – y 2).

То же самое мы можем выразить другими словами. В положении 1 находящийся в электростатическом поле заряд обладал потенциальной энергией W 1 = qEy 1 , а в положении 2 – потенциальной энергией W 2 = qEy 2 . При переходе заряда из положения 1 в положение 2 электрическое поле заряженной плоскости совершило над ним работу А = –(W 2 – W 1).

Напомним, что потенциальная энергия определена лишь с точностью до слагаемого: если нулевое значение потенциальной энергии выбрать в другом месте оси Y , то в принципе ничего не изменится.

6.4. Потенциал однородного электростатического поля

Если потенциальную энергию заряда в электростатическом поле разделить на величину этого заряда, то получим энергетическую характеристику самого поля, которую назвали потенциалом :

Потенциал в системе СИ выражают в вольтах : 1 В = 1 Дж/1 Кл.

Если в однородном электрическом поле ось Y направить параллельно вектору напряжённости E , то потенциал произвольной точки поля будет пропорционален координате точки: причём коэффициентом пропорциональности является напряжённость электрического поля.

6.5. Разность потенциалов

Потенциальная энергия и потенциал определяются лишь с точностью до произвольной постоянной, зависящей от выбора их нулевых значений. Однако работа поля имеет вполне определённое значение, поскольку определяется разностью потенциальных энергий в двух точках поля:

А = –(W 2 – W 1) = –( 2 q – 1 q ) = q ( 1 – 2).

Работа по перемещению электрического заряда между двумя точками поля равна произведению заряда на разность потенциалов начальной и конечной точек. Разность потенциалов иначе называют напряжением .

Напряжение между двумя точками равно отношению работы поля при перемещении заряда из начальной точки в конечную к этому заряду:

Напряжение, как и потенциал, выражается в вольтах.

6.6. Разность потенциалов и напряжённость

В однородном электрическом поле напряжённость направлена в сторону убывания потенциала и, согласно формуле = Еy , разность потенциалов равна U = 1 – 2 = Е (у 1 – y 2). Обозначив разность координат точек у 1 – y 2 = d , получаем U = Ed .

В эксперименте вместо непосредственного измерения напряжённости проще определять разность потенциалов и затем вычислять модуль напряжённости по формуле

где d – расстояние между двумя точками поля, близко расположенными в направлении вектора Е . При этом в качестве единицы напряжённости используют не ньютон на кулон, а вольт на метр:

6.7. Потенциал произвольного электростатического поля

Опыт показывает, что отношение работы по перемещению заряда из бесконечности в данную точку поля к величине этого заряда остаётся неизменным: = А /q . Это отношение принято называть потенциалом данной точки электростатического поля , принимая потенциал в бесконечности равным нулю.

6.8. Принцип суперпозиции для потенциалов

Любое как угодно сложное электростатическое поле можно представить в виде суперпозиции полей точечных зарядов. Каждое такое поле в выбранной точке имеет определённый потенциал. Поскольку потенциал является скалярной величиной, результирующий потенциал поля всех точечных зарядов есть алгебраическая сумма потенциалов 1 , 2 , 3 , … полей отдельных зарядов: = 1 + 2 + 3 + ... Это соотношение является прямым следствием принципа суперпозиции электрических полей.

6.9. Потенциал поля точечного заряда

Обратимся теперь к сферическому (точечному) заряду. Выше показано, что напряжённость электрического поля, созданного равномерно распределённым по сфере зарядом Q , не зависит от радиуса сферы. Представим, что на некотором расстоянии r от центра сферы находится пробный заряд q . Напряжённость поля в точке, где находится заряд,

На рисунке изображён график зависимости силы электростатического взаимодействия между точечными зарядами от расстояния между ними. Чтобы найти работу электрического поля при перемещении пробного заряда q с расстояния r до расстояния R , разобьём этот промежуток точками r 1 , r 2 ,..., r п на равные отрезки. Средняя сила, действующая на заряд q в пределах отрезка [rr 1 ], равна

Работа этой силы на этом участке:

Аналогичные выражения для работы получатся для всех других участков. Поэтому полная работа:

Одинаковые слагаемые с противоположными знаками уничтожаются, и окончательно получаем:

– работа поля над зарядом

– разность потенциалов

Теперь, чтобы найти потенциал точки поля относительно бесконечности, устремляем R к бесконечности и окончательно получаем:

Итак, потенциал поля точечного заряда обратно пропорционален расстоянию до заряда.

6.10. Эквипотенциальные поверхности

Поверхность, в каждой точке которой потенциал электрического поля имеет одно и то же значение, называется эквипотенциальной. Эквипотенциальные поверхности поля заряженного шара нетрудно продемонстрировать подвешенным на нити пробным зарядом, как это показано на рисунке.

На втором рисунке электростатическое поле двух разноимённых зарядов представлено силовыми (сплошные) и эквипотенциальными (пунктирные) линиями.

Исследование 6.1. Разность потенциалов

Задание . Разработайте простой опыт, позволяющий ввести понятие разности потенциалов, или напряжения.

Вариант выполнения. Два металлических диска на изолирующих подставках установите параллельно друг другу на расстоянии примерно 10 см. Диски зарядите равными по модулю и противоположными по знаку зарядами. Зарядите шарик электростатического динамометра зарядом, например, q = 5 нКл (см. исследование 3.6), и введите его в область между дисками. При этом стрелка динамометра покажет определённое значение силы, действующей на шарик. Зная параметры динамометра, вычислите значение модуля силы (см. исследование 3.6). Например, в одном из наших опытов стрелка динамометра показала значение х = 2 см, следовательно, согласно формуле модуль силы f = = 17 10 –5 Н.

Перемещая динамометр, покажите, что во всех точках поля между заряженными дисками на пробный заряд действует одна и та же сила. Перемещая динамометр так, чтобы пробный заряд прошёл путь s = 5 см в направлении действующей на него силы, спросите учащихся: какую работу совершает над зарядом электрическое поле? Добейтесь понимания, что работа поля над зарядом по модулю равна

А = fs = 8,5 10 –6 Дж, (6.3)

причём она положительна, если заряд перемещается по направлению напряжённости поля, и отрицательна, если в противоположном направлении. Вычислите разность потенциалов между начальным и конечным положениями шарика динамометра: U = А /q = 1,7 10 3 В.

С одной стороны напряжённость электрического поля между пластинами:

С другой стороны, согласно формуле (6.1), при d = s :

Таким образом, опыт показывает, что напряжённость электрического поля можно определить двумя способами, которые, разумеется, приводят к одинаковым результатам.

Исследование 6.2. Градуировка электрометра по напряжению

Задание. Разработайте эксперимент, показывающий, что с помощью демонстрационного стрелочного электрометра можно измерять напряжение.

Вариант выполнения. Экспериментальная установка схематически изображена на рисунке. Пользуясь электростатическим динамометром, определите напряжённость однородного электрического поля и по формуле U = Еd вычислите разность потенциалов между проводящими пластинами. Повторяя эти действия, отградуируйте электрометр по напряжению так, чтобы получился электростатический вольтметр.

Исследование 6.3. Потенциал поля сферического заряда

Задание. Экспериментально определите работу, которую нужно совершить против электростатического поля, чтобы переместить пробный заряд из бесконечности в некоторую точку поля, созданного заряженной сферой.

Вариант выполнения. На изолирующей стойке закрепите шарик из пенопласта, обёрнутый алюминиевой фольгой. Зарядите его от пьезоэлектрического или иного источника (cм. п. 1.10) и одноимённым зарядом зарядите пробный шарик на стержне электростатического динамометра. Пробный заряд находится бесконечно далеко от исследуемого, если электростатический динамометр не фиксирует силы электростатического взаимодействия между зарядами. В эксперименте удобно электростатический динамометр оставить неподвижным, а перемещать исследуемый заряд.

Постепенно приближайте заряженный шарик на изолирующей подставке к шарику электростатического динамометра. В первую строку таблицы записывайте значения расстояния r между зарядами, во вторую строку – соответствующие им значения силы электростатического взаимодействия. Удобно расстояние выражать в сантиметрах, а силу – в условных единицах, в которых отградуирована шкала динамометра. По получившимся данным постройте график зависимости силы от расстояния. Подобный график вы уже строили, выполняя исследование 3.5.

Теперь найдите зависимость работы по перемещению заряда из бесконечности в данную точку поля. Обратите внимание на то, что в эксперименте сила взаимодействия зарядов становится практически равной нулю на сравнительно небольшом удалении одного заряда от другого.

Разбейте весь диапазон изменения расстояния между зарядами на равные участки, например, по 1 см. Обработку экспериментальных данных удобнее начинать с конца графика. На участке от 16 до 12 см среднее значение силы f ср составляет 0,13 усл. ед., поэтому элементарная работа А на этом участке равна 0,52 усл. ед. На участке от 12 до 10 см, рассуждая аналогичным образом, получаем элементарную работу 0,56 усл. ед. Далее удобно брать участки длиной по 1 см. На каждом из них найдите среднее значение силы и умножьте его на длину участка. Полученные значения работы поля A на всех участках занесите в четвёртую строку таблицы.

Чтобы узнать работу А , совершённую электрическим полем при перемещении заряда из бесконечности на данное расстояние, складывайте соответствующие элементарные работы и получающиеся значения записывайте в пятую строку таблицы. В последней строке запишите значения величины 1/r , обратной расстоянию между зарядами.

Постройте график зависимости работы электрического поля от величины, обратной расстоянию, и убедитесь, что получается прямая линия (рисунок справа).

Таким образом, опыт показывает, что работа электрического поля при перемещении заряда из бесконечности в данную точку поля обратно пропорциональна расстоянию от этой точки до заряда, создающего поле.

Исследование 6.4. Высоковольтный источник напряжения

Информация. Для школьного физического эксперимента в настоящее время промышленность выпускает прекрасные высоковольтные источники напряжения. Они имеют две выходные клеммы или два высоковольтных электрода, разность потенциалов между которыми плавно регулируется в пределах от 0 до 25 кВ. Встроенный в прибор стрелочный или цифровой измеритель напряжения позволяет определять разность потенциалов между полюсами источника. Такие приборы повышают уровень учебного эксперимента по электростатике.

Задание. Разработайте доказательный учебный эксперимент, показывающий, что потенциал заряженного шара, экспериментально определённый в соответствии с формулой (6.2) для точечного заряда, равен потенциалу, сообщённому этому шару высоковольтным источником питания.

Вариант выполнения. Вновь соберите экспериментальную установку, состоящую из электростатического динамометра с пробным шариком и проводящего шара на изолирующей подставке (см. исследования 3.4 и 6.3). Измерьте параметры всех элементов установки.

Для определённости укажем, что в одном из опытов мы использовали электростатический динамометр, параметры которого указаны в исследовании 3.4: а = 5 10 –3 м, b = 55 10 –3 м, с = 100 10 –3 м, т = 0,94 10 –3 кг, причём шарики были одинаковыми и имели радиус R = 7,5 10 –3 м. Для этого динамометра градуировочный коэффициент K , переводящий условные единицы силы в ньютоны, даётся формулой (cм. исследование 3.6).

График работы по перемещению пробного заряда из бесконечности в данную точку поля представлен на рисунке на с. 31. Чтобы в этом графике от условных единиц работы перейти к джоулям, нужно в соответствии с формулой A = f ср r значения расстояния в сантиметрах перевести в метры, значения силы в усл. ед. (см) перевести в усл. ед. (м) и умножить на K . Таким образом: A (Дж) = 10 –4 K A (уcл. ед.).

Соответствующий график зависимости работы от величины, обратной расстоянию, представлен ниже. Экстраполируя его до R = 7,5 мм, получаем, что работа по перемещению пробного заряда из бесконечности до поверхности заряженного шарика А = 57 10 –4 K = 4,8 10 –5 Дж. Так как заряды шариков были одинаковы и составляли q = 6,6 10 –9 Кл (см. исследование 3.6), то искомый потенциал = А /q = 7300 В.

Включите высоковольтный источник и регулятором установите на нём выходное напряжение, например, U = 15 кВ. Одним из электродов поочерёдно прикоснитесь к проводящим шарикам и выключите источник. При этом каждый из шариков приобретает относительно Земли потенциал = 7,5 кВ. Повторите опыт по определению зарядов шариков методом Кулона (исследование 3.6) и вы получите значение, близкое к 7 нКл.

Таким образом, в эксперименте двумя независимыми способами определены заряды шаров. Первый способ основан на непосредственном использовании определения потенциала, второй опирается на сообщение шарикам определённого потенциала c помощью высоковольтного источника и последующее измерение их заряда с помощью закона Кулона. При этом получились совпадающие результаты.

Конечно, никто из школьников и не сомневается в том, что современные приборы правильно измеряют значения физических величин. Но теперь они убеждены, что правильно измеряются именно те величины, которые они изучают в простейших явлениях. Установлена прочная связь между основами физики и современной техникой, ликвидирована пропасть между школьными знаниями и реальной жизнью.

Вопросы и задания для самоконтроля

1. Как экспериментально доказать, что электростатическое поле потенциально?

2. В чём суть аналогии между гравитационным и электростатическим полями?

3. Какова связь между напряжённостью и разностью потенциалов электростатического поля?

4. Предложите опыт, непосредственно обосновывающий справедливость принципа суперпозиции для потенциалов.

5. Вычислите потенциал поля точечного заряда, пользуясь интегральным исчислением. Сравните сделанный вами вывод формулы с элементарным выводом, приведённым в лекции.

6. Выясните, почему в опыте по определению разности потенциалов между двумя проводящими дисками (исследование 6.1) нельзя перемещать измеритель напряжённости так, чтобы его пробный шарик прошёл всё расстояние от одного диска до другого.

7. Отградуировав электрометр по напряжению (исследование 6.2), сравните получившийся результат с теми значениями чувствительности прибора по напряжению, которые приводятся в паспортных данных электрометра.

9. Детально разработайте методику формирования в сознании учащихся обоснованной убеждённости, что введённое при изучении электростатики понятие потенциала электрического поля в точности соответствует тому, которое используется современной наукой и техникой.

Литература

Бутиков Е.И. , Кондратьев А.С. Физика: Учеб. пособие: В 3 кн. Кн. 2. Электродинамика. Оптика. – М.: Физматлит, 2004.

Восканян А.Г ., Марленский А.Д. , Шибаев А.Ф. Демонстрация закона Кулона на основе количественных измерений: В сб. «Учебный эксперимент по электродинамике», вып. 7. – М.: Школа-Пресс, 1996.

Касьянов В.А. Физика-10. – М.: Дрофа, 2003.

Мякишев Г.Я. , Синяков А.З ., Слободсков Б.А . Физика: Электродинамика. 10–11 кл.: Учеб. для угл. изучения физики. – М.: Дрофа, 2002.

Учебное оборудование для кабинетов физики обще- образовательных учреждений: Под ред. Г.Г.Никифорова. – М.: Дрофа, 2005.

Электростатическое поле - это потенциальное поле. Понятие о потенциальных силовых полях было введено в курсе механики. Поле называется потенциальным, если работа сил этого поля при перемещении из одной точки в другую не зависит от формы траектории, а определяется только начальным и конечным положениями.

Потенциальным является любое центральное поле, в котором сила зависит только от расстояния до силового центра и направлена по радиусу. Доказательство этого утверждения рассматривалось в курсе механики. Электростатическое поле, создаваемое уединенным точечным зарядом, описывается законом Кулона. Это поле сферически-симметрично и представляет собой частный случай центрального поля. Отсюда следует потенциальный характер электростатического поля точечного заряда.

В соответствии с принципом суперпозиции напряженность электростатического поля, создаваемого любым, сколь угодно сложным распределением неподвижных зарядов, представляет собой векторную сумму напряженностей полей, создаваемых каждым зарядом в отдельности. Сила, действующая на перемещаемый пробный заряд, определяется полной напряженностью поля. Поэтому работа при перемещении пробного заряда равна сумме работ сил, действующих со стороны отдельных точечных зарядов. Работа каждой такой силы не зависит от формы траектории. Поэтому и суммарная работа - работа результирующей силы - также не зависит от траектории, что и доказывает потенциальный характер любого электростатического поля.

Потенциальная энергия. Для заряда в электростатическом поле, как и в случае любого потенциального поля, можно ввести понятие потенциальной энергии. Потенциальная энергия заряда в любой точке поля определяется как работа, совершаемая силами поля при перемещении заряда из этой точки в некоторую фиксированную точку, потенциальная энергия в которой принята равной нулю. Можно сказать и иначе: эта потенциальная энергия равна работе, совершаемой внешними силами при переносе заряда из выбранной фиксированной точки в данную точку поля. Выбор фиксированной точки нулевого значения потенциальной энергии произволен. Поэтому потенциальная энергия заряда в поле определена с точностью до некоторой аддитивной постоянной. Такая неоднозначность потенциальной энергии никак не сказывается на физических результатах, поскольку во всех конкретных расчетах имеет значение только изменение энергии при переносе заряда из одной точки поля в другую.

Потенциал электрического поля. Действующая на заряд сила в электрическом поле Е пропорциональна заряду: Поэтому и совершаемая при некотором перемещении заряда работа, и его

потенциальная энергия также пропорциональны заряду Вследствие этого удобно рассматривать потенциальную энергию в расчете на единицу заряда. Возникающая при этом энергетическая характеристика электростатического поля называется потенциалом.

Потенциал в некоторой точке поля определяется как отношение работы А, совершаемой силами поля при перемещении пробного заряда из данной точки поля в фиксированную точку, потенциал которой принят равным нулю, к этому заряду:

Физический смысл имеет только разность потенциалов между какими-либо точками, а не сами по себе значения потенциалов этих точек.

Потенциал поля точечного заряда. Для электростатического поля точечного заряда удобно в качестве точки с нулевым потенциалом выбрать бесконечно удаленную точку. Тогда выражение для потенциала точки, отстоящей на расстояние от заряда создающего поле, имеет вид

Напомним, что в системе единиц СГСЭ и в СИ. Соответственно формула (2) записывается в одном из двух видов:

Подчеркнем, что в формулах (2) и (2а) для потенциала стоит заряд создающий поле (а не модуль заряда, как в формулах (4) и (4а) предыдущего параграфа для модуля напряженности поля). Потенциал поля, создаваемого положительным зарядом всюду положителен, так как работа сил этого поля при перемещении положительного пробного заряда в бесконечность из любой точки поля положительна. Аналогично, потенциал поля отрицательного заряда всюду отрицателен. Все это, как и сами формулы (2) и (2а), справедливо, разумеется, при выборе точки нулевого потенциала на бесконечности.

Такой же формулой (2) выражается и потенциал поля снаружи равномерно заряженного шара, так как его поле неотличимо от поля такого же точечного заряда, помещенного в центр шара. Во всех точках внутри такого шара, где напряженность поля равна нулю, потенциал одинаков и имеет такое же значение, как и на поверхности шара.

Потенциальная энергия некоторого заряда помещенного в электростатическое поле, равна произведению на потенциал той точки поля, где находится этот заряд:

Если заряд находится в поле, создаваемом другим точечным зарядом то его потенциальная энергия, с учетом (2), имеет вид

При одноименных зарядах т. е. при отталкивании, потенциальная энергия положительна и убывает при разведении зарядов. При разноименных зарядах, т. е. при притяжении, электростатическая потенциальная энергия, как и потенциальная энергия в гравитационном поле, отрицательна и возрастает при разведении зарядов.

Принцип суперпозиции для потенциала. В соответствии с принципом суперпозиции потенциал произвольной точки поля нескольких зарядов, как следует из определения потенциала, равен алгебраической сумме потенциалов, создаваемых в этой точке всеми зарядами:

При этом точка нулевого потенциала выбирается общей для всех зарядов.

Работа электрического поля. Напряжение. Работа, совершаемая силами электростатического поля при перемещении некоторого заряда из одной точки в другую, равна произведению переносимого заряда на разность потенциалов между начальной и конечной точками:

Выражение (6) следует из определения потенциала.

Разность потенциалов между двумя точками обычно называют напряжением между точками (или просто напряжением)

Как видно из (6), работа сил поля при перемещении заряда из одной точки в другую равна произведению переносимого заряда на напряжение:

Потенциал, разность потенциалов и напряжение измеряются в одних и тех же единицах. В СГСЭ эта единица не имеет специального названия, а в СИ единица напряжения называется вольт При перемещении заряда в один кулон между точками с разностью потенциалов один вольт электрические силы совершают работу один джоуль:

Эквипотенциальные поверхности. Наглядное графическое изображение электростатических полей возможно не только с помощью картины силовых линий, дающей представление о напряженности в каждой точке поля, но и с помощью эквипотенциальных поверхностей. Эквипотенциальная поверхность это множество точек, в которых потенциал имеет одно и то же значение.

Рис. 13. Линии напряженности и эквипотенциальные поверхности электрического паля точечного зарада

Обычно изображают сечение этих поверхностей какой-либо плоскостью (плоскостью чертежа), поэтому на рисунках они выглядят линиями. Например, для электростатического поля точечного заряда эквипотенциальные поверхности представляют собой концентрические сферы с общим центром в точке, где находится создающий поле заряд. На рис. 13 сечения этих сфер выглядят как концентрические окружности.

Силовые линии электростатического поля перпендикулярны эквипотенциальным поверхностям. Действительно, если мысленно перемещать пробный заряд по эквипотенциальной поверхности, то работа, как видно из (8), равна нулю. Таким образом, сила электрического поля работы не совершает, а это возможно, если сила перпендикулярна перемещению.

Два способа изображения электростатических полей - силовыми линиями и эквипотенциальными поверхностями - эквивалентны: имея одну из этих картин, можно легко построить другую. Особенно наглядны рисунки, на которых изображены обе эти картины (рис. 14).

Рис. 14. Линии напряженности и эквипотенциальные поверхности поля разноименных (а) и одноименных (б) одинаковых по модулю точечных зарядов

Связь напряженности и потенциала. Напряженность электростатического поля и его потенциал связаны друг с другом. Эту связь легко найти, рассматривая работу сил поля при столь малом перемещении пробного заряда, чтобы напряженность поля можно было считать постоянной. С одной стороны, эта работа равна скалярному произведению силы на перемещение, т. е. . С другой стороны, эта работа, в соответствии с (8), равна произведению заряда на разность потенциалов, т. е. Знак минус здесь возникает потому, что приращение потенциала по определению равно разности значений потенциала в конечной и начальной точках: Приравнивая оба выражения для работы, получаем

Скалярное произведение можно представить как произведение проекции напряженности на направление вектора перемещения и модуля этого перемещения

Направление перемещения можно выбрать произвольно. Выбирая его вдоль одной из осей координат, из (10) получаем выражение для проекции вектора Е на соответствующую ось:

Подчеркнем, что в числителях этих выражений, в соответствии с (9), стоят приращения потенциала при малых перемещениях вдоль соответствующих осей координат.

Энергия системы зарядов. До сих пор мы рассматривали потенциальную энергию некоторого заряда, помещенного в электростатическое поле, создаваемое другими зарядами, расположение которых в пространстве считалось неизменным. Однако по физической природе пробные заряды и заряды - источники поля ничем не отличаются, а потенциальная энергия заряда в поле - это энергия взаимодействия этих зарядов. Поэтому в некоторых случаях бывает удобно придать выражению для потенциальной энергии симметричный вид, чтобы все заряды - и источники поля, и пробные - фигурировали как равноправные. Для двух взаимодействующих точечных зарядов такой симметричный вид выражения потенциальной энергии уже был найден - это формула (4). В ней принимается, что потенциальная энергия равна нулю, когда заряды разведены на бесконечно большое расстояние.

В более сложных случаях, когда рассматривается несколько взаимодействующих зарядов, принимается, что потенциальная энергия взаимодействия равна нулю при каком-либо определенном взаимном расположении этих зарядов. Удобно (хотя и необязательно) в

качестве этой конфигурации выбрать такое расположение, когда все взаимодействующие заряды удалены друг от друга на бесконечные расстояния. Потенциальная энергия системы во всякой иной конфигурации определяется как работа, совершаемая всеми силами взаимодействия при переходе системы из этой конфигурации в положение с нулевой потенциальной энергией. В то же время эта потенциальная энергия равна работе, совершаемой внешними силами при переносе всех зарядов из положения с нулевой потенциальной энергией в заданную конфигурацию.

Энергия взаимодействия системы неподвижных точечных зарядов выражается формулой

где - потенциал поля, создаваемого всеми зарядами, кроме в той точке, где находится заряд:

Здесь - расстояние между зарядами.

Для доказательства формулы (12) можно использовать метод математической индукции. Прежде всего отметим, что для

2 эта формула совпадает с полученной ранее формулой (4): сумма по содержит два слагаемых:

где в соответствии с (13)

Подставляя эти значения в (14), получаем формулу (4).

Теперь предположим, что формула (12) справедлива для точечных зарядов, и докажем ее справедливость для системы зарядов. При внесении заряда из бесконечности энергия системы изменится на величину, равную работе, совершаемой внешними силами:

Здесь согласно предположению, определяется формулой (12), а работа, совершаемая внешними силами при перемещении заряда из бесконечности в точку поля с потенциалом равна где

Потенциал этой точки поля, создаваемый всеми зарядами, кроме

После внесения заряда изменяются потенциалы всех точек поля, кроме той, где находится этот заряд. Потенциал точки, в которой находится заряд, теперь будет равен

Выразим энергию системы зарядов (15) через новые значения потенциалов с помощью соотношений (17):

Сумма произведений на второе слагаемое в скобках в правой части этого равенства, в силу формулы (16), равна Поэтому

Таким образом, формула (12) для энергии системы точечных зарядов доказана.

Докажите, что электростатическое поле, создаваемое уединенным точечным зарядом, потенциально.

Докажите, что поле, создаваемое любым распределением неподвижных электрических зарядов, потенциально.

Что означает принцип суперпозиции применительно к энергетической характеристике электростатического поля - потенциалу?

Докажите справедливость формулы (6), рассматривая работу поля при перемещении заряда из начальной точки I в бесконечность, а затем из бесконечности в точку 2.

Чему равна работа сил электростатического поля при перемещении заряда по замкнутому контуру?

Докажите, что поле потенциально, если работа сил этого поля при перемещении по любому замкнутому контуру равна нулю.

Нарисуйте картину силовых линий и эквипотенциальных поверхностей однородного электростатического поля.

Может ли существовать электростатическое поле, силовые линии которого представляют собой параллельные прямые с переменной густотой (рис. 15)?

В чем различие понятия потенциальной энергии пробного заряда, находящегося в электростатическом поле двух зарядов, и понятия потенциальной энергии всех трех зарядов?

Вывод формулы. Докажем справедливость формулы (2) для потенциала уединенного точечного заряда. Потенциал в точке Р, находящейся на расстоянии от заряда равен работе, совершаемой силами поля при перемещении единичного положительного заряда из точки Р в бесконечно удаленную точку. Поскольку сила, действующая на единичный заряд, равна напряженности поля Е, то выражение для интересующей нас работы, равной потенциалу в точке Р, запишется в виде

Интегрирование здесь может выполняться вдоль любого пути, проходящего из точки Р в бесконечность, так как работа сил потенциального поля не зависит от формы траектории. Выберем этот путь вдоль прямой, проходящей из заряда через данную точку Р на бесконечность. Поскольку напряженность поля Е направлена вдоль этой прямой (от заряда при и к заряду при то скалярное произведение можно записать как

если начало координат выбрано в точке, где находится заряд Интегрирование в (18) теперь выполняется в пределах от до

О модели точечного заряда. Обратим внимание на то, что и напряженность, и потенциал поля точечного заряда неограниченно возрастают (стремятся к бесконечности) при приближении точки Р к тому месту, где расположен создающий поле заряд. Физически это бессмысленно, так как соответствует обращению в бесконечность и силы, действующей на пробный заряд, и его потенциальной энергии. Все это говорит о том, что сама модель точечного заряда имеет ограниченную область применимости.

В какой мере для элементарных частиц можно использовать модель точечного заряда? Эксперименты на больших ускорителях показали, что нуклоны обладают внутренней структурой. Заряд в них распределен некоторым образом по объему, причем не только у протона, но даже и у нейтрона, который в целом электрически нейтрален. Что касается электронов, то для них модель точечного заряда «работает» вплоть до расстояний порядка так называемого классического радиуса электрона см.

Напряженность как градиент потенциала. Вернемся теперь к формулам выражающим напряженность любого электростатического поля через его потенциал. Из формул (11) следует, что проекции вектора Е напряженности поля на оси координат можно рассматривать как взятые с противоположным знаком производные по соответствующим координатам от потенциала скалярной функции координат При вычислении любой из этих производных, например по х, две другие переменные, у и нужно считать фиксированными. Такие производные функции нескольких переменных в математике называют частными производными и обозначают как Вектор, проекции которого равны частным производным скалярной функции по соответствующим координатам, называется градиентом этой скалярной функции. Таким образом, напряженность Е электрического поля - это взятый со знаком минус градиент потенциала. Записывают это следующим образом:

Здесь V - символический вектор, проекции которого на оси координат - операции дифференцирования:

Орты декартовой системы координат.

Чем быстрее меняется в пространстве потенциал, тем больше модуль его градиента, т. е. модуль напряженности электрического поля. «Смотрит» вектор напряженности в том направлении, в котором потенциал убывает быстрее всего, т. е. перпендикулярно эквипотенциальным поверхностям. Увидеть, что вектор Е направлен именно таким образом, можно с помощью формулы (9): если из рассматриваемой точки совершить одинаковые по модулю перемещения во всевозможных направлениях, то наибольшее изменение потенциала произойдет тогда, когда это перемещение направлено вдоль вектора Е.

На каком свойстве электростатического поля основан выбор пути интегрирования в формуле (18)?

Почему для поля точечного заряда точку нулевого значения потенциала нельзя выбрать в том месте, где находится сам заряд?

Объясните, почему напряженность электрического поля направлена в сторону наибыстрейшего убывания потенциала.


Самое обсуждаемое
Изольда и Тристан: красивая история вечной любви Изольда и Тристан: красивая история вечной любви
Стипендия программы пять с плюсом Стипендия программы пять с плюсом
Рецензия на роман В. П. Астафьева «Печальный детектив. «Печальный детектив Астафьев детектив Рецензия на роман В. П. Астафьева «Печальный детектив. «Печальный детектив Астафьев детектив


top