Карликовые звезды. Виды звезд в наблюдаемой вселенной Руда карликовой звезды

Карликовые звезды. Виды звезд в наблюдаемой вселенной Руда карликовой звезды

Звезды - это самые горячие объекты во Вселенной. В их недрах происходят процессы термоядерного синтеза, в результате чего выделяется невероятно большое количество энергии. Температура поверхности звезд колеблется от 2 000 до 60 000 °С, а свет излучаемый ими виден за миллиарды световых лет. Но не все звезды одинаковы, есть и совершенно другие - холодные звезды, которые словно призраки блуждают по бескрайнему космосу, скрываясь от всех.

Теория

Такими звездами являются коричневые карлики (бурые карлики). Хотя согласно последнему утвержденному научным сообществом определению коричневые карлики - это субзвездные объекты малой массы (от 12 до 80 масс Юпитера или от 0,012 до 0,075 масс Солнца), но все же это звезды, пусть и не совсем обычные.

коричневый карлик в представлении художника

Впервые о коричневых карликах заговорили в 1960-х годах, но тогда их существование предполагалось только гипотетически. Гипотеза о существовании мелких, холодных и темных звезд заинтриговала многих ученых и через некоторое время начались поиски подобных объектов. Однако 35 лет наблюдений не позволили выявить хоть что-то похожее на гипотетический бурый карлик. С другой стороны, это было вполне закономерным, ведь как выяснится позднее такие звезды в большинстве своем не выделяют света (или их светимость ничтожно мала), а все наземные телескопы того времени имели слишком низкую чувствительность.

Первый коричневый карлик

Только в 1995 году благодаря использованию телескопов инфракрасного диапазона с повышенной чувствительностью удалось найти первого коричневого карлика - Тейде 1 . После было обнаружено еще очень большое количество подобных звезд, что наткнуло физиков на гипотезу о высокой распространенности бурых карликов во Вселенной, которая сейчас приобретает все большую правдоподобность.

второй обнаруженный коричневый карлик Глизе 229B, вращается вокруг красного карлика Глизе 229 в двухзвездной системе

В недрах коричневых карликов также как и в других звездах протекают процессы термоядерного синтеза , но они не носят стабильный характер и длятся относительно не долго, результатом этого является быстрое остывание звезды. Со временем светимость и температура бурых карликов постоянно снижается.

Спектральные классы

По температуре поверхности коричневые карлики довольно сильно разнятся между собой, поэтому было предложено разделить их на 4 спектральных класса (сперва классов было 3, класс Y долгое время отвергался научным миром):

Спектральный класс М - довольно массивные субзвездные объекты, близкие как по размерам, так и по поверхности температуры (до 2000 °С) к красным карликам.

Спектральный класс L - температура поверхности 1500-1000 °С, масса более 70 масс Юпитера. Первый обнаруженный карлик класса L - GD 165B . Всего найдено более 400 субзвезд этого типа.

Спектральный класс T - температура поверхности 1000-400 °С, масса менее 70 масс Юпитера. Первый найденный Т-карлик - Глизе 229B . На данный найдено больше 200 звезд спектрального класса T.

Спектральный класс Y - до 2011 года этот тип существовал только в теории. Температура ниже 400 °С.

Самые холодные звезды

В августе 2011 года было обнаружено 7 сверххолодных коричневых карликов отнесенных к классу Y.

Температура поверхности карлика CFBDSIR 1458+10 составляет приблизительно 97 °С .

Коричневый карлик WISE 1828+2650 обнаруженный космическим инфракрасным телескопом WISE имеет еще более низкую температуру - около 25 °С .

коричневый карлик WISE 1828+2650 класса Y в представлении художника

В космосе существует огромное количество звёзд. Яркие и огромные можно увидеть и невооружённым глазом, даже если они находятся очень далеко, даже по космическим меркам. Но намного больше звёзд карликов. Увидеть их невооружённым глазом практически невозможно. Среди карликовых звёзд есть красные карлики, которые уже отживают свой срок. И коричневые карлики толком, которых и звёздами-то можно назвать с натяжкой. И уже почти остывшие белые карлики, которые со временем превратятся в чёрные.

На нашей планете существует некий закон природы, что чем меньше по размерам организм, тем больше его особей. Данный закон распространяется и на звёзды. Такое положение вещей вызывает много вопросов. Ведь с живыми существами на Земле всё предельно ясно, а вот со звёздами не совсем. На половину учёные эту загадку отгадали. Для того, что бы поддерживать себя от гравитационного коллапса, звёздам с огромным весом необходимо нагреваться до высоких температур и в итоге за несколько миллионов лет они просто исчерпывают свой запас энергии, так как для поддержания температуры в центре сотни миллионов градусов, нужны очень большие затраты этой самой энергии. Карлики же спокойно тлеют, растягивая своё «топливо» на десятки миллиардов лет. Нашей Галактике всего-то тринадцать миллиардов лет, следовательно, когда бы ни появился карлик, он живёт и по сей день. Вторая половина вопроса состоит в том, что гигантские звёзды рождаются на много реже, чем карлики. На 100 звёзд типа нашего Солнца появляется всего одна звезда в десять раз больше по массе, чем . Вот именно этот вопрос учёным пока не поддаётся. Долгое время среди астрономических классификаций не было места объектам, которые и не звёзды и не планеты. Вопрос существуют ли такие объекты, волновал астрономов не один десяток лет. Но в середине девяностых годов за пределами Солнечной системы были обнаружены такие планеты. Оказались они помассивнее Юпитера – самой большой планеты Солнечной системы.
Но встал вопрос, где провести грань между планетой и звездой. Считалось, что звезда использует свой главный источник энергии, т.е. термоядерные реакции. Планеты же светятся за счёт отражённого света и термоядерные реакции в ней не происходят. Но, оказалось, что существуют объекты термоядерные реакции, в которых происходят, но не являются основным источником энергии. Астрофизик Кумар рассчитал, что если масса космического тела составляет 7,5% и более от массы Солнца, то в центре такого объекта температура будет достаточной для протекания реакции. Это значение назвали «границей возгорания водорода». К примеру, если масса звезды составляет 8% от солнечной, то она будет тлеть примерно шесть триллионов лет, что в 400 раз больше возраста Вселенной.

Три десятилетия продолжались поиски коричневых карликов придуманных Шив Кумаром. Хотя этот учёный и был теоретиком, но тоже взялся за телескоп в надежде отыскать такую звезду. Сразу было понятно, что искать нужно вблизи других звёзд, до которых уже было известно расстояние. Но эта звезда должна быть не яркой, так как она просто ослепит телескоп и не даст разглядеть тусклый карлик. Следовательно, искать нужно было около красных звёзд, или уже остывающих белых. Но в то время эти поиски не увенчались успехом.

И только когда появились более чувствительные приборы, астрономам удалось обнаружить очень тусклые красные карлики. Со временем выяснилось, что для обнаружения так называемых «несостоявшихся звёзд» не обязательно иметь огромные телескопы.

С 1995 по 1997 годы, было открыто множество таких объектов, что дало возможность классифицировать новые объекты находящиеся между планетами и звёздами.

Звезды являются самыми горячими объектами не только в Солнечной системе, но и во всей Вселенной. Внутри них постоянно происходят термоядерные реакции, и в результате этих реакций происходит выброс большого количества энергии. Температура звезд достигает гигантских значений - от 2 до 60 тыс. градусов по Цельсию. Однако не все звезды похожи друг на друга. Существуют и другие, гораздо более холодные звезды.

К какому классу объектов относятся бурые карлики?

Коричневые карлики - одни из самых загадочных объектов Вселенной. Звезды, вес которых в 10 раз меньше Солнца, относятся к категории красных карликов. Но ни один ученый не допустит и мысли о том, что красный карлик не является звездой. А в середине 1990-х годов астрономы нашли объекты, которые были названы «черными призраками». Они обладали гигантскими размерами и внушительной гравитацией.

Измерение массы

Планета, с массой которой обычно сравнивается вес коричневого карлика, - Юпитер. Существуют бурые карлики, которые в 12 раз превосходят по своим размерам эту планету. Относить их к звездам ученые затрудняются. Но и планетой такой огромный объект назвать никак нельзя. В настоящее время астрономы активно обсуждают вопрос о том, стоит ли относить газовые гиганты и бурые карлики к разным категориям (напомним, что планета Юпитер является газовым гигантом).

Бурые карлики превосходят по своим размерам в несколько десятков раз Юпитер, но при этом в «черные призраки» приблизительно в сто раз меньше Солнца. Другое название коричневых карликов - бурые карлики. Несмотря на то что в науке принято их называть субзвездными объектами, однако они все же являются звездами, хотя и обладают весьма необычными свойствами.

Первые предположения

Впервые астрономы стали говорить об этом типе объектов в 1960-х годах. Однако ни одно предположение об их существовании не было подтверждено. Многие амбициозные ученые были заинтригованы, и начали усиленно изучать ближайшие окрестности Вселенной, пытаясь найти подобные объекты. Но в течение целых 35 лет никто так и не смог найти объект, хотя бы отдаленно напоминающий коричневый карлик. Однако такой исход событий был вполне закономерен - ведь этот тип звезд не излучает собственного света, либо его светимость настолько мала, что его попросту невозможно заметить. Кроме того, наземные телескопы имеют достаточно низкую чувствительность, чтобы замечать объекты подобного рода.

Свойства бурых карликов

Коричневых карликов астрономы не могут причислить ни к категории планет, ни к категории звезд. Самое простое определение будет таким: "тип несовершенных звезд". Они очень плохо росли, едва смогли достичь по своему весу определенного показателя, при котором внутри них начались бы процессы термоядерных реакций, благодаря которым обычные звезды сияют на небосклоне. Именно поэтому коричневые карлики не являются источником света и тепла. Астрономам чрезвычайно тяжело определить их местоположение.

Однако у ученых всегда есть несколько секретов, которыми они могут воспользоваться. Например, в спектре свечения коричневых карликов всегда присутствуют следы лития. Этот металл часто используется в различных видах промышленности, например, в производстве батареек. Но в космическом пространстве литий встречается редко, потому как легко распадается в таких условиях. Однако этот металл является типичным для бурых карликов.

Атмосфера холодных звезд

Еще одним признаком, по которому можно определить местонахождение таких звезд - это наличие метана. Этот газ не может накапливаться на обычных звездах из-за их высоких температур. Однако коричневые карлики относительно холодны, и поэтому метан легко накапливается в их атмосфере. Метановая атмосфера такого типа звезд является очень плотной.

На их поверхности бушуют неистовые ветры, и сюда никогда не проникают лучи других звезд, соответственно, погода никогда не бывает благоприятной. Поэтому на фото коричневые карлики выглядят негостеприимно. Исследователи космоса никогда не приближаются к этим звездам.

Посадить корабль на их поверхность невозможно. Сила их тяжести настолько чудовищна, что астронавты сразу же погибли бы в ее тисках еще до того, как корабль превратился бы в груду металла.

Многие из бурых карликов активно формируют около себя газопылевые облака, из которых, в свою очередь, формируются планеты. Такая планетная система недавно была обнаружена в созвездии Хамелеона.

Ближайший объект

А в 2014 году все астрономические журналы пестрили заголовками: «В окрестностях солнечной системы найден коричневый карлик». Бурому карлику было присвоено название WISE J085510.83-071442.5. Он расположен на расстоянии приблизительно в 7,2 световых годах от Солнца. Для сравнения: наиболее близкая к нам система - это Альфа Центавра, и находится она в 4 световых годах от планеты Земля. Масса этого бурого карлика была оценена учеными приблизительно. Считается, что данный объект в 3-10 раз больше планеты Юпитер. Некоторые астрономы предполагают, что с такой массой бурый карлик когда-то мог относиться к категории газовых гигантов, который со временем был выброшен за границы Солнечной системы.

Однако большинство исследователей все же склонны полагать, что этот объект относится к группе бурых карликов. Ведь они достаточно распространены во Вселенной. В дальнейшем астрономом Кевином Луманом, который анализировал снимки этого объекта, были обнаружены еще два бурых карлика. Они находятся на расстоянии 6,5 световых лет от нашей планеты. Непосредственно в Солнечной системе других бурых карликов астрономы пока не обнаружили. Возможно, все эти открытия только предстоят в будущем.

Таинственный спутник Солнца

Существует еще одно предположение о существовании особого коричневого карлика в Солнечной системе - Немезиды. Это теоретически предполагаемая звезда, которая когда-то была «компаньоном» Солнца. Однако ученые до сих пор спорят, к какой же категории она относится - бурых, красных или белых карликов. Теория о существовании Немезиды была выдвинута для того, чтобы объяснить цикличность процесса вымирания различных биологических видов на Земле - по наблюдениям ученых, это происходило каждые 27 млрд лет.

Однако астрономы пока не нашли подтверждения существованию Немезиды. Считается, что эта звезда могла быть спутником Солнца и вращаться по более вытянутой орбите. Теория о том, что вокруг Солнца вращается еще одна звезда, была популярной в научных кругах в 70-х - 80-х годах прошлого столетия. Когда звезда приближалась к планетам, она вызывала гравитационные возмущения в их орбитах, что и могло послужить массовому вымиранию видов. Кроме того, звезда могла приносить на землю кометы из облака Оорта, сквозь которое она проходила как раз каждые 27 млрд лет.

Бурые карлики в окрестностях Солнечной системы

Не так давно астрономами недалеко от Солнечной системы была обнаружена группа сверххолодных звезд - коричневых карликов. Исследования возглавлял астроном из Монреаля Дж. Роберт. Эти открытия помогут ученым в дальнейшем определить, насколько плотно эти объекты располагаются недалеко от нашей звездной системы, а также в других близлежащих областях. Команда астронома Дж. Роберта открыла 165 коричневых карликов. Треть из этих сверххолодных звезд (этот термин означает, что температура их поверхности не превышает 2200 Кельвинов) имеет достаточно необычный химический состав. Ученые считают, что открытие большей части звезд такого типа предстоит лишь в будущем, ведь предыдущие ученые «проглядели» большое количество объектов.

Относительно яркие и массивные светила довольно просто увидеть невооруженным глазом, но в Галактике куда больше карликовых звезд, которые видны только в мощные телескопы, даже если расположены вблизи от Солнечной системы. Среди них есть как скромные долгожители — красные карлики, так и недотянувшие до полноценного звездного статуса коричневые и отошедшие на покой белые карлики, постепенно превращающиеся в черные.

Судьба звезды целиком зависит от размера, а точнее от массы. Чтобы лучше представить себе массу звезды, можно привести такой пример. Если положить на одну чашу весов 333 тысячи земных шаров, а на другую — Солнце, то они уравновесят друг друга. В мире звезд наше Солнце — середнячок. Оно в 100 раз уступает по массе самым крупным звездам и раз в 20 превосходит самые легкие. Казалось бы, диапазон невелик: приблизительно как от кита (15 тонн) до кота (4 килограмма). Но звезды — не млекопитающие, их физические свойства гораздо сильнее зависят от массы. Сравнить хотя бы температуру: у кита и кота она почти одинаковая, а у звезд различается в десятки раз: от 2000 Кельвинов у карликов до 50 000 у массивных звезд. Еще сильнее — в миллиарды раз различается мощность их излучения. Именно поэтому на небе мы легко замечаем далекие гигантские звезды, а карликов не видим даже в окрестностях Солнца.

Но когда были проведены аккуратные подсчеты, выяснилось, что распространенность гигантов и карликов в Галактике сильно напоминает ситуацию с китами и котами на Земле. В биосфере есть правило: чем мельче организм, тем больше его особей в природе. Оказывается, это справедливо и для звезд, но объяснить эту аналогию не так-то просто. В живой природе действуют пищевые цепи: крупные поедают мелких. Если бы лис в лесу стало больше, чем зайцев, то чем бы питались эти лисы? Однако звезды, как правило, не едят друг друга. Тогда почему же гигантских звезд меньше, чем карликов? Половину ответа на этот вопрос астрономы уже знают. Дело в том, что жизнь массивной звезды в тысячи рад короче, чем карликовой. Чтобы удержать собственное тело от гравитационного коллапса, звездам-тяжеловесам приходится раскаляться до высокой температуры — сотен миллионов градусов в центре. Термоядерные реакции идут в них очень интенсивно, что приводит к колоссальной мощности излучения и быстрому сгоранию «топлива». Массивная звезда растрачивает всю энергию за несколько миллионов лет, а экономные карлики, медленно тлея, растягивают свой термоядерный век на десятки и более миллиардов лет. Так что, когда бы ни родился карлик, он здравствует до сих пор, ведь возраст Галактики всего около 13 миллиардов лет, А вот массивные звезды, появившиеся на свет более 10 миллионов лет назад, давно уже погибли.

Однако это лишь половина ответа на вопрос, почему гиганты встречаются в космосе так редко. А вторая половина состоит в том, что массивные звезды рождаются намного реже, чем карликовые. На сотню новорожденных звезд типа нашего Солнца появляется лишь одна звезда с массой раз в 10 больше, чем у Солнца. Причину этой «экологической закономерности» астрофизики пока не разгадали.

До недавних пор и классификации астрономических объектов зияла большая дыра: самые маленькие известные звезды были раз в 10 легче Солнца, а самая массивная планета — Юпитер — в 1000 раз. Существуют ли в природе промежуточные объекты — не звезды и не планеты с массой от 1/1000 до 1/10 солнечной? Как должно выглядеть это «недостающее звено»? Можно ли его обнаружить? Эти вопросы давно волновали астрономов, но ответ стал намечаться лишь в середине 1990-х годон, когда программы поиска планет за пределами Солнечной системы принесли первые плоды. На орбитах вокруг нескольких солнцеподобных звезд обнаружились планеты-гиганты, причем все они оказались массивнее Юпитера. Промежуток по массе между звездами и планетами стал сокращаться. Но возможна ли смычка, и где пронести границу между звездой и планетой?

Еще недавно казалось, что это совсем просто: звезда светит собственным светом, а планета — отраженным. Поэтому в категорию планет попадают те объекты, в недрах которых за все время существованиям не протекают реакции термоядерного синтеза. Если же на некотором этапе эволюции их мощность была сравнима со светимостью (то есть термоядерные реакции служили главным источником энергии), то такой объект достоин называться звездой. Но оказалось, что могут существовать промежуточные объекты, в которых термоядерные реакции происходят, но никогда не служат основным источником энергии. Их обнаружили в 1996 году, но еще задолго до того они получили название коричневых карликов. Открытию этих странных объектов предшествовал тридцатилетний поиск, начавшийся с замечательного теоретического предсказания.

В 1963 году молодой американский астрофизик индийского происхождения Шив Кумар рассчитал модели самых мало массивных звезд и выяснил, что если масса космического тела превосходит 7,5% солнечной, то температура в его ядре достигает нескольких миллионов градусов и R нем начинаются термоядерные реакции превращения водорода в гелий. При меньшей массе сжатие останавливается раньше, чем температура в центре достигает значения, необходимого для протекания реакции синтеза гелия. С тех пор это критическое значение массы называют «границей возгорания водорода», или пределом Кумара. Чем ближе звезда к этому, пределу, тем медленнее идут в ней ядерные реакции. Например, при массе 8% солнечной звезда будет «тлеть» около 6 триллионов лет — в 400 раз больше современного возраста Вселенной! Так что, в какую бы эпоху ни родились такие звезды, все они еще находятся в младенческом возрасте.

Впрочем и в жизни менее массивных объектов бывает краткий эпизод, когда они напоминают нормальную звезду. Речь идет о телах с массами от 1% до 7% массы Солнца, то есть от 13 до 75 масс Юпитера. В период формирования, сжимаясь под действием гравитации, они разогреваются и начинают светиться инфракрасным и даже чуть-чуть красным — видимым светом. Температура их поверхности может подняться до 2500 Кельвинов, а в недрах превысить 1 миллион кельвинов. Этого хватает, чтобы началась реакция термоядерного синтеза гелия, но только не из обычного водорода, а из очень редкого тяжелого изотопа — дейтерия, и не обычного гелия, а легкого изотопа гелия-3. Поскольку дейтерия в космическом веществе очень мало, весь он быстро сгорает, не давая существенного выхода энергии. Это все равно, что бросить в остывающий костер лист бумаги: сгорит моментально, но тепла не даст. Разогреться сильнее «мертворожденная» звезда не может — ее сжатие останавливается под действием внутреннего давления вырожденного газа. Лишенная источников тепла, она в дальнейшем лишь остывает, как обычная планета. Поэтому заметить эти неудавшиеся звезды можно только в период их недолгой молодости, пока они теплые. Выйти на стационарный режим термоядерного горения им не суждено.

Открытие «мертворожденных» звезд

Физики уверены: что не запрещено законами сохранения, то разрешено. Астрономы добавляют к этому; природа богаче нашего воображения. Если Шив Кумар смог придумать коричневые карлики, то природе, казалось бы, не составит труда их создать. Три десятилетия продолжались безрезультатные поиски этих тусклых светил. В работу включались все новые и новые исследователи. Даже теоретик Кумар прильнул к телескопу в надежде найти объекты, открытые им на бумаге. Его идея была проста: обнаружить одиночный коричневый карлик очень сложно, поскольку нужно не только зафиксировать его излучение, но и доказать, что это не далекая гигантская звезда с холодной (по звездным меркам) атмосферой или даже окруженная пылью галактика на краю Вселенной. Самое трудное в астрономии – определить расстояние до объекта. Поэтому нужно искать карлики рядом с нормальными звездами, расстояния до которых уже известны. Но яркая звезда ослепит телескоп и не позволит раз-глядеть тусклый карлик. Следовательно, искать их надо рядом с другими карликами! Например с красными — звездами предельно малой массы или же белыми — остывающими остатками нормальных звезд. В 1980-х годах поиски Кумара и других астрономов не принесли результата. Хотя не раз появлялись сообщения об открытии коричневых карликов, но детальное исследование каждый раз показывало, что это — маленькие звезды. Однако идея поиска была правильная и спустя десятилетие она сработала.

В 1990-е годы у астрономов появились новые чувствительные приемники излучения — ПЗС-матрицы и крупные телескопы диаметром до 10 метров с адаптивной оптикой, которая компенсирует вносимые атмосферой искажения и позволяет с поверхности Земли получать почти такие же четкие изображения, как из космоса. Это сразу же принесло плоды: были обнаружены предельно тусклые красные карлики, буквально пограничные с коричневыми.

А первого коричневого карлика отыскала в 1995 году группам астрономов под руководством Рафаэля Реболо из Института астрофизики на Канарских островах. С помощью телескопа на острове Ла-Пальма они нашли в звездном скоплении Плеяды объект, который назвали Teide Pleiades 1, позаимствовав название у вулкана Пико-де-Тейде на острове Тенерифе. Правда, некоторые сомнения в природе этого объекта оставались, и пока испанские астрономы доказывали, что это действительно коричневый карлик, в том же году о своем открытии заявили их американские коллеги. Группа под руководством Тадаши Накаджима из Калифорнийского технологического института с помощью телескопов Паломарской обсерватории обнаружила на расстоянии 19 световых лет от Земли в созвездии Зайца, рядом с очень маленькой и холодной звездой Глизе 229, еще более мелкий и холодный ее спутник Глизе 229В. Температура его поверхности — всего 1000 К, а мощность излучения в 160 тысяч раз ниже солнечной.

Незвездная природа Глизе 229В окончательно подтвердилась в 1997 году так называемым литиевым тестом. В нормальных звездах небольшое количество лития, сохранившегося с эпохи рождения Вселенной, быстро сгорает в термоядерных реакциях. Однако коричневые карлики для этого недостаточно горячи. Когда в атмосфере Глизе 229В был обнаружен литий, этот объект стал первым «несомненным» коричневым карликом. По размерам он почти совпадает с Юпитером, а его масса оценивается в 3- 6% массы Солнца. Он обращается вокруг своего более массивного компаньона Глизе 229А по орбите радиусом около 40 астрономических единиц (как Плутон вокруг Солнца).

Очень быстро выяснилось, что для поиска «несостоявшихся звезд» годятся и не самые крупные телескопы. Первых одиночных коричневых карликов открыли на рядовом телескопе в ходе планомерных обзоров неба. Например, объект Kelu-1 в созвездии Гидры обнаружен в рамках долгосрочной программы поиска карликовых звезд в окрестностях Солнца, которая началась на Европейской Южной обсерватории в Чили еще в 1987 году. При помощи 1-метрового телескопа системы Шмидта астроном Чилийского университета Мария Тереза Руиз уже много лет регулярно фотографирует некоторые участки неба, а затем сравнивает снимки, полученные с интервалом в годы. Среди сотен тысяч слабых звезд она ищет те, которые заметно смещаются относительно других — это безошибочный признак близких светил. Таким способом Мария Руиз открыла уже десятки белых карликов, а в 1997 году ей наконец попался коричневый. Его тип определили по спектру, в котором оказались линии лития и метана. Мария Руиз назвала его Kelu-1: на языке народа мапуче, населявшего некогда центральную часть Чили, «келу» означает красный. Он расположен на расстоянии около 30 световых лет от Солнца и не связан ни с одной звездой.

Все эти находки, сделанные в 1995-1997 годах, и стали прототипами нового класса астрономических объектов, который занял место между звездами и планетами. Как это обычно бывает в астрономии, за первыми открытиями сразу последовали новые. В последние годы множество карликов обнаружено в ходе рутинных инфракрасных обзоров неба 2MASS и DENIS.

Звездная пыль

Уже вскоре после открытия бурые карлики заставили астрономов внести коррективы в устоявшуюся десятки лет назад спектральную классификацию звезд. Оптический спектр звезды — это ее лицо, а точнее — паспорт. Положение и интенсивность линий в спектре прежде всего говорят о температуре поверхности, а также о других параметрах, в частности химическом составе, плотности газа в атмосфере, напряженности магнитного поля и т. п. Около 100 лет назад астрономы разработали классификацию звездных спектров, обозначив каждый класс буквой латинского алфавита. Их порядок многократно пересматривали, переставляя, убирая и добавляя буквы, пока не сложилась общепринятая схема, безупречно служившая астрономам многие десятки лет. В традиционном виде последовательность спектральных классов выглядит так: O-B-A-F-G-K-M. Температура поверхности звезд от класса О до класса М убывает со 100 000 до 2000 К. Английские студенты-астрономы даже придумали мнемоническое правило для запоминания порядка следования букв «Oh! Be A Fine Girl, Kiss Me!» И вот на рубеже веков этот классический ряд пришлось удлинить сразу на две буквы. Оказалось, что в формировании спектров экстремально холодных звезд и субзвезд весьма важную роль играет пыль.

На поверхности большинства звезд из-за высокой температуры никакие молекулы существовать не могут. Однако у самых холодных звезд класса М (с температурой ниже 3000 К) в спектрах видны мощные полосы поглощения окисей титана и ванадия (TiO, VO). Естественно, ожидалось, что у еще более холодных коричневых карликов эти молекулярные линии будут еще сильнее. Все в том же 1997 году у белого карлика GD 165 был открыт коричневый компаньон GD 165В, с температурой поверхности 1900 К и светимостью 0,01% солнечной. Он поразил исследователей тем, что в отличие от других холодных звезд не имеет полос поглощения TiO и VO, за что был прозван «странной звездой». Такими же оказались спектры и других коричневых карликов с температурой ниже 2000 К. Как показали расчеты, молекулы TiO и VO в их атмосферах конденсируются в твердые частицы — пылинки, и уже не проявляют себя в спектре, как это свойственно молекулам газа.

Чтобы учесть эту особенность, Дэви Киркпатрик из Калифорнийского технологического института уже на следу-ющий год предложил расширить традиционную спектральную классификацию, добавив в нее класс L для мало-массивных инфракрасных звезд, с температурой поверхности 1500-2000 К. Большинство объектов L-класса должны быть коричневыми карликами, хотя очень старые маломассивные звезды тоже могут остыть ниже 2000 К.

Продолжая исследования L-карликов, астрономы обнаружили еще более экзотические объекты. В их спектрах видны мощные полосы поглощения воды, метана и молекулярного водорода, поэтому их называют «метановыми карликами». Прототипом этого класса считается первый открытый бурый карлик Глизе 229В. В 2000 году Джеймс Либерт с коллегами из Аризонского университета выделили в самостоятельную группу Т-карлики с температурой 1500-1000 К и даже чуть ниже.

Коричневые карлики ставят перед астрономами много сложных и очень интересных вопросов. Чем холоднее атмосфера звезды, тем труднее изучать ее как наблюдателям, так и теоретикам. Присутствие пыли делает эту задачу еще сложнее: конденсация твердых частиц не только изменяет состав свободных химических элементов в атмосфере, но и влияет на теплообмен и форму спектра. В частности, теоретические модели с учетом пыли предсказали парниковый эффект в верхних слоях атмосферы, что подтверждается наблюдениями. Вдобавок расчеты показывают, что после конденсации пылинки начинают тонуть. Возможно, на разных уровнях в атмосфере формируются плотные облака пыли. Метеорология коричневых карликов может оказаться не менее разнообразной, чем у планет-гигантов. Но если атмосферы Юпитера и Сатурна можно изучать вблизи, то расшифровывать метано-вые циклоны и пылевые бури коричневых карликов придется только по их спектрам.

Секреты «ПОЛУКРОВОК»

Вопросы о происхождении и численности коричневых карликов пока остаются открытыми. Первые подсчеты их количества в молодых звездных скоплениях типа Плеяд показывают, что по сравнению с нормальными звездами общая масса коричневых карликов, видимо, не так велика, чтобы «списать» на них всю скрытую массу Галактики. Но этот вывод еще нуждается в проверке. Общепринятая теория происхождения звезд не дает ответа и на вопрос, как образуются коричневые карлики. Объекты столь малой массы могли бы формироваться подобно планетам-гигантам в околознездных дисках. Но обнаружено довольно много одиночных коричневых карликов, и трудно предположить, что все они вскоре после рождения были потеряны своими более массивными компаньонами. К тому же совсем недавно на орбите вокруг одного из коричневых карликов открыли планету, а значит, он не подвергался сильному гравитационному влиянию соседей, иначе карлик бы ее потерял.

Совершенно особый путь рождения коричневых карликов наметился недавно при исследовании двух тесных двойных систем — LL Андромеды и EF Эридана. В них более массивный компаньон, белый карлик, своей гравитацией стягивает вещество с менее массивного спутника, так называемой звезды-до нора. Расчеты показывают, что первоначально в этих системах спутники-доноры были обычными звездами, но за несколько миллиардов лет их масса упала ниже предельного значения и термоядерные реакции в них угасли. Теперь по внешним признакам это типичные коричневые карлики.

Температура звезды-донора в системе LL Андромеды около 1300 К, а в системе EF Эридана — около 1650 К. По массе они лишь в несколько десятков раз превосходят Юпитер, а в их спектрах видны линии метана. Насколько их внутренняя структура и химический состав сходны с аналогичными параметрами «настоящих» коричневых карликов, пока неизвестно. Таким образом, нормальная маломассивная звезда, потеряв значительную долю своего вещества, может стать коричневым карликом. Правы были астрономы, утверждая, что природа изобретательнее нашей фантазии. Коричневые карлики, эти «не звезды и не планеты», уже начали преподносить сюрпризы. Как выяснилось недавно, несмотря на свой холодный характер, некоторые из них являются источниками радио- и даже рентгеновского (!) излучения. Так что в будущем этот новый тип космических объектов обещает нам немало интересных открытий.

Вырожденные звезды

Обычно в период формирования звезды ее гравитационное сжатие продолжается до тех пор, пока плотность и температура в центре не достигнут значений, необходимых для запуска термоядерных реакций, и тогда за счет выделения ядерной энергии давление газа уравновешивает его собственное гравитационное притяжение. У массивных звезд температура выше и реакции начинаются при относительно не-большой плотности вещества, но чем меньше масса, тем выше оказывается «плотность зажигания». Например, в центре Солнца плазма сжата до 150 граммов на кубический сантиметр.

Однако при плотности, еще в сотни раз большей, вещество начинает сопротивляться давлению независимо от роста температуры, и в итоге сжатие звезды прекращается прежде, чем выход энергии в термоядерных реакциях становится значимым. Причиной остановки сжатия служит квантово-механический эффект, который физики называют давлением вырожденного электронного газа. Дело в том, что электроны относятся к тому типу частиц, который подчиняется так называемому «принципу Паули», установленному физиком Вольфгангом Паули в 1925 году. Этот принцип утверждает, что тождественные частицы, например электроны, не могут одновременно находиться в одном и том же состоянии. Именно поэтому в атоме элек-троны движутся по разным орбитам. В недрах звезды нет атомов: при большой плотно-сти они раздавлены и существует единое «электронное море». Для него принцип Паули звучит так: расположенные рядом электроны не могут иметь одинаковые скорости.

Если один электрон покоится, другой должен двигаться, а третий - двигаться еще быстрее, и т. д. Такое состояние электронного газа физики называют вырождением. Даже если небольшая звезда сожгла все термоядерное топливо и лишилась источника энергии, ее сжатие может быть остановлено давлением вырожденного электронного газа. Как бы сильно ни охладилось вещество, при высокой плотности движение электронов не прекратится, а значит, давление вещества будет противостоять сжатию независимо от температуры: чем больше плотность, тем выше давление.

Сжатие умирающей звезды с массой, равной солнечной, остановится, когда она уменьшится примерно до размера Земли, то есть в 100 раз, а плотность ее вещества станет в миллион раз выше плотности воды. Так образуются белые карлики. Звезда меньшей массы прекращает сжатие при меньшей плотности, поскольку сила ее тяготения не так велика. Очень маленькая звезда-неудачник может стать вырожденной и прекратить сжатие еще до того, как в ее недрах температура поднимется до порога «термо-ядерного зажигания». Такому телу никогда не стать настоящей звездой.

Белые карлики – звезды, имеющие большую массу (порядка солнечной) и малый радиус (радиус Земли), что менее предела Чандрасекара для выбранной массы, являющиеся продуктом эволюции красных гигантов. Процесс производства термоядерной энергии в них прекращен, что приводит к особым свойствам этих звезд. Согласно различным оценкам, в нашей Галактике их количество составляет от 3 до 10 % всего звездного населения.

В 1844 году немецкий астроном и математик Фридрих Бессель при наблюдении обнаружил небольшое отклонение звезды от прямолинейного движения, и сделал предположение о наличии у Сириуса невидимой массивной звезды-спутника.

Его предположение было подтверждено уже в 1862 году, когда американский астроном и телескопостроитель Альван Грэхэм Кларк, занимаясь юстировкой самого крупного в то время рефрактора, обнаружил возле Сириуса неяркую звезду, которую впоследствии окрестили Сириус Б.

Белый карлик Сириус Б имеет низкую светимость, а гравитационное поле воздействует на своего яркого компаньона довольно заметно, что свидетельствует о том, что у этой звезды крайне малый радиус при значительной массе. Так впервые был открыт вид объектов, названный белыми карликами. Вторым подобным объектом была звезда Маанена, находящаяся в созвездии Рыб.

Механизм образования

Белые карлики представляют собой конечную стадию эволюции небольшой звезды с массой, сравнимой с массой Солнца. В каком случае они появляются? Когда в центре звезды, например, как наше Солнце, выгорает весь водород, ее ядро сжимается до больших плотностей, тогда как внешние слои сильно расширяются, и, сопровождаясь общим потускнением светимости, звезда превращается в красного гиганта. Пульсирующий красный гигант затем сбрасывает свою оболочку, поскольку внешние слои звезды слабо связаны с центральным горячим и очень плотным ядром. Впоследствии эта оболочка становится расширяющейся планетарной туманностью. Как видите красные гиганты и белые карлики очень тесно взаимосвязаны.

Сжатие ядра происходит до крайне малых размеров, но, тем не менее, не превышает предела Чандрасекара, то есть верхний предел массы звезды, при котором она может существовать в виде белого карлика.

Виды белых карликов

Спектрально их разделяют по двум группам. Излучение белого карлика делят на наиболее распространенный «водородный» спектральный класс DA (до 80 % от общего количества), в котором отсутствуют спектральные линии гелия, и более редкий «гелиевый белый карлик» тип DB, в спектрах звезд которого отсутствуют водородные линии.

Американский астроном Ико Ибен предложил различные сценарии их происхождения: в виду того, что горение гелия в красных гигантах неустойчиво, периодически развивается слоевая гелиевая вспышка. Он удачно предположил механизм сброса оболочки в разные стадии развития гелиевой вспышки – на ее пике и в период между двумя вспышками. Образование его зависит от механизма сброса оболочки соответственно.

Вырожденный газ

До того как Ральф Фаулер в 1922 году в своей работе «Плотная материя» дал объяснение характеристикам плотности и давления внутри белых карликов, высокая плотность и физические особенности такого строения казались парадоксальными. Фаулер предположил, что в отличие от звезд главной последовательности, для которых уравнение состояния описывается свойствами идеального газа, в белых карликах оно определяется свойствами вырожденного газа.

График зависимости радиуса белого карлика от его массы. Обратите внимание: ультрарелятивистский предел ферми-газа совпадает с пределом Чандрасекара

Вырожденный газ образуется, когда расстояние между его частицами становится меньше волны де-Бройля, а значит, что на его свойствах начинают сказываться квантово-механические эффекты, вызванные тождественностью частиц газа.

В белых карликах, из-за огромных плотностей, оболочки атомов разрушаются под силой внутреннего давления, и вещество становится электронно-ядерной плазмой, причем электронная часть описывается свойствами вырожденного электронного газа, аналогичными поведению электронов в металлах.

Среди них наиболее распространены углеродно-кислородные с оболочкой, состоящей из гелия и водорода.

Статистически радиус белого карлика сравним с радиусом Земли, а масса варьируется от 0,6 до 1,44 солнечных масс. Поверхностная температура находится в пределах – до 200 000 К, что также объясняет их цвет.

Ядро

Основной характеристикой внутреннего строения является очень высокая плотность ядра, в котором гравитационное равновесие обуславливается вырожденным электронным газом. Температура в недрах белого карлика и гравитационное сжатие уравновешивается давлением вырожденного газа, что обеспечивает относительную устойчивость диаметра, а его светимость, в основном, происходит за счет остывания и сжатия внешних слоев. Состав зависит насколько успела проэволюционировать материнская звезда, в основном это углерод с кислородом и небольшие примеси водорода и гелия, которые превращаются в вырожденный газ.

Эволюция

Гелиевая вспышка и сброс внешних оболочек красным гигантом продвигает звезду по диаграмме Герцшпрунга-Рассела, обуславливая его превалирующий химический состав. Жизненный цикл белого карлика, после этого, остается стабилен до самого своего остывания, когда звезда теряет свою светимость и становится невидимой, входя в стадию так называемого «черного карлика», — конечный результат эволюции, хотя в современной литературе этот термин используется все реже.

Перетекание вещества со звезды на белый карлик, который из за низкой светимости не виден

Присутствие рядом звездных компаньонов продляет их жизнь из-за падения вещества на поверхность через формирование аккреционного диска. Особенности аккреции вещества в парных системах могут приводить к накоплению вещества на поверхности белых карликов, что в результате приводит к взрыву новой или сверхновой звезды (в случае особо массивных) типа Ia.

Взрыв сверхновой в представлении художника

В случае если в системе «белый карлик – красный карлик» аккреция нестационарна, результатом может быть своеобразный взрыв белого карлика (например U Gem (UG)) или же новоподобных переменных звезд, взрыв которых носит катастрофический характер.

Остаток сверхновой SN 1006 — представляет собой взорвавшейся белый карлик, который находился в двойной системе. Он постепенно захватывал вещество звезды-компаньона и возрастающая масса спровоцировала термоядерный взрыв, который разорвал карлика

Положение на диаграмме Герцшпрунга-Рассела

На диаграмме они занимают левую нижнюю часть, принадлежа ветви звезд, покинувших главную последовательность из состояния красных гигантов.

Здесь находится область горячих звезд с низкой светимостью, которая является второй по численности среди звезд наблюдаемой Вселенной.

Спектральная классификация

Множество Белых карликов в шаровом скоплении М4, снимок Хаббла

Они выделены в особый спектральный класс D (от английского Dwarfs – карлики, гномы). Но в 1983 году Эдвард Сион предложил более точную классификацию, которая учитывает различия их спектров, а именно: D (подкласс) (спектральная особенность) (температурный индекс).

Существуют следующие подклассы спектров DA, DB, DC, DO, DZ и DQ, которые уточняют наличие или отсутствие линий водорода, гелия, углерода и металлов. А спектральные особенности P, H, V и X уточняют наличие или отсутствие поляризации, магнитного поля при отсутствии поляризации, переменность, пекулярность или неклассифицируемость белых карликов.

  1. Какой ближайший белый карлик к Солнцу? Ближайший это звезда ван Маанена, которая представляет собой тусклый объект находящийся всего в 14,4 световых лет от Солнца. Она расположена в центре созвездия Рыб.

    Звезда ван Маанена — самый близкий, одиночный белый карлик

    Звезда ван Маанена является слишком слабой, чтобы мы смогли ее увидеть невооруженным глазом, ее звездная величина 12,2. Однако если рассматривать белый карлик в системе со звездой, то ближайшим является Сириус Б, удаленный от нас на расстояние 8.5 световых лет. Кстати, самый известный белый карлик это Сириус Б.

    Сравнение размеров Сириуса В и Земли

  2. Самый большой белый карлик располагается в центре планетарной туманности М27 (NGC 6853), которая больше известна как туманность Гантель. Она находится в созвездии Лисички, на расстоянии около 1360 световых лет от нас. Ее центральная звезда больше, чем любой другой известный белый карлик, на данный момент.

  3. Самый маленький белый карлик имеет неблагозвучное название GRW +70 8247 и находится примерно в 43 световых лет от Земли в созвездии Дракона. Его звездная величина около 13 и виден он только через большой телескоп.
  4. Срок жизни белого карлика зависит от того, как медленно он будет остывать. Иногда на его поверхности накапливается достаточно газа и он превращается в сверхновую типа Ia. Продолжительность жизни весьма велика – миллиарды лет, а точнее 10 в 19 степени и даже больше. Большая продолжительность жизни связана с тем, что они очень медленно остывают и у них есть все шансы дожить до конца Вселенной. А время остывания пропорционально четвертой степени температуры.

  5. Среднестатистический белый карлик размеры имеет в 100 раз меньше чем наше Солнце, а при плотности 29000 кг/кубический сантиметр, вес 1 кубического см равняется 29 тоннам. Но стоит учитывать, плотность может варьировать в зависимости от размеров, от 10*5 до 10*9 г/см3.
  6. Наше Солнце в конечной стадии превратится в белый карлик. Как бы грустно это не звучало, но масса нашей звезды не позволяет ей превратиться в нейтронную звезду или черную дыру. Солнце превратится в белого карлика и будет в таком виде существовать еще миллиарды лет.
  7. Как превращается звезда в белый карлик? В основном все зависит от массы, давайте рассмотрим на примере нашего Солнца. Пройдет еще несколько миллиардов лет и Солнце начнет увеличиваться в размерах, превращаясь в красного гиганта, связанно это с тем, что весь водород выгорит в его ядре. После того, как водород выгорит начнется реакция синтеза гелия и углерода.

    В результате этих процессов звезда становится нестабильной и возможно образование звездных ветров. Так как реакции горения более тяжелых элементов чем гелий, приводят к большему выделению тепла. При синтезе гелия, некоторым участкам, расширившейся внешней оболочки Солнца, удастся оторваться и вокруг нашей звезды сформируется планетарная туманность. В результате от нашей звезды в конечном итоге останется одно ядро и когда Солнце превратится в белый карлик в нем уже прекратятся реакции ядерного синтеза.

  8. Планетарная туманность, которая образуется в результате расширения и сброса своих внешних оболочек часто очень ярко светится. Причина заключается в том, что оставшееся от звезды ядро (считай белый карлик) остывает очень медленно, а высокая температура поверхности в сотни тысяч и миллионы градусов по Кельвину, излучает, в основном, в далеком ультрафиолете. Газы туманности поглощая эти УФ кванты, переизлучают их в видимой части света, попутно поглотив часть энергии кванта и светят очень ярко, в отличии от остатка, который в видимом диапазоне очень тусклый.

Ответы на вопросы

  1. Чем отличается белый карлик от ? Вся эволюция звезды основывается на первоначальной ее массе, от этого параметра и будет зависть ее светимость, продолжительность жизни и во что она превратится в конце. Для звезды массой 0,5-1,44 солнечной, жизнь закончится тем, что звезда расширится и превратится в красного гиганта, который сбросив свои внешние оболочки образует планетарную туманность оставит после себя лишь одно ядро, состоящее из вырожденного газа.


































    Это упрощенный механизм того, как образуется белый карлик. Если масса звезды больше 1,44 массы Солнца (так называемый предел Чандрасекара, при котором звезда может существовать как белый карлик. Если масса будет превышать его, то она станет нейтронной звездой.), то звезда израсходовав весь водород в ядре начинает синтез более тяжелых элементов, вплоть до железа. Дальнейший синтез элементов, которые тяжелее железа, невозможен т.к. требует больше энергии чем выделяется в процессе синтеза и ядро звезды коллапсирует в нейтронную звезду. Электроны срываются с орбит и падают в ядро, там сливаются с протонами и в итоге образуются нейтроны. Нейтронное вещество весит в сотни и миллионы раз больше чем любое другое.

  2. Отличие белого карлика и пульсара. Все те же самые отличия что и в случае с нейтронной звездой, только стоит учитывать, что пульсар (а это и есть нейтронная звезда) еще и очень быстро вращается, десятки раз в секунду, а период вращения белого карлика составляет, на примере звезды 40 Eri B, 5 часов 17 минут. Разница ощутима!

    Пульсар PSR J0348 +0432 — нейтронная звезда и белый карлик

  3. Из-за чего светятся белые карлики? Так термоядерные реакции уже не происходят все имеющееся излучение это тепловая энергия, так почему они светятся? По сути он медленно остывает, как раскаленное железо, которое сперва ярко белое, а затем краснеет. Вырожденный газ очень хорошо проводит тепло из центра и он остывает на 1% за сотни миллионов лет. Со временем остывание замедляется и он может просуществовать триллионы лет.
  4. Во что превращаются белые карлики? Возраст Вселенной слишком мал, для того чтобы могли образоваться, так называемые, черные карлики, конечной стадия эволюции. Так что видимых подтверждений у нас пока нет. На основе расчетов его остывания мы знаем лишь одно, что их продолжительность жизни, имеет поистине огромную, превышающую возраст Вселенной (13,7 млрд. лет) и теоретически составляющую триллионы лет.
  5. Существует ли белый карлик с сильным магнитным полем как у нейтронной звезды? Некоторые из них обладают мощными магнитными полями, гораздо сильнее, чем любые созданные нами на Земле. Например, сила магнитного поля на поверхности Земли составляет всего от 30 до 60 миллионных долей тесла, в то время как напряженность магнитного поля белого карлика может достигать 100 000 тесла.

    Но нейтронная звезда, обладает поистине сильным магнитным полем – 10*11 Тл и называется магнетаром! На поверхности некоторых магнетаров могут образовываться толчки, которые формируют колебания в звезде. Эти колебания часто приводят к огромным выбросам гамма-излучения магнетаром. Так, например, магнетар SGR 1900+14, который находится на расстоянии на 20 000 световых лет, в созвездии Орла, взорвался 27 августа 1998 г. Мощная вспышка гамма излучения была настолько сильной, что заставила выключить аппаратуру космического аппарата NEAR Shoemaker в целях ее сохранения.

Научно-популярный фильм о героях нашей статьи


Самое обсуждаемое
юрий левитан мужественный, торжественный голос юрия левитана звучал как набат, как колокол в годину горя юрий левитан мужественный, торжественный голос юрия левитана звучал как набат, как колокол в годину горя
Краткая биография фаддея беллинсгаузена Краткая биография фаддея беллинсгаузена
Метод дистанционного зондирования Земли: характеристики и достоинства Что такое дистанционное зондирование земли Метод дистанционного зондирования Земли: характеристики и достоинства Что такое дистанционное зондирование земли


top