Простейшие тригонометрические уравнения тангенс. Решение простейших тригонометрических уравнений

Простейшие тригонометрические уравнения тангенс. Решение простейших тригонометрических уравнений

Концепция решения тригонометрических уравнений.

  • Для решения тригонометрического уравнения преобразуйте его в одно или несколько основных тригонометрических уравнений. Решение тригонометрического уравнения в конечном итоге сводится к решению четырех основных тригонометрических уравнений.
  • Решение основных тригонометрических уравнений.

    • Существуют 4 вида основных тригонометрических уравнений:
    • sin x = a; cos x = a
    • tg x = a; ctg x = a
    • Решение основных тригонометрических уравнений подразумевает рассмотрение различных положений «х» на единичной окружности, а также использование таблицы преобразования (или калькулятора).
    • Пример 1. sin x = 0,866. Используя таблицу преобразования (или калькулятор), вы получите ответ: х = π/3. Единичная окружность дает еще один ответ: 2π/3. Запомните: все тригонометрические функции являются периодическими, то есть их значения повторяются. Например, периодичность sin x и cos x равна 2πn, а периодичность tg x и ctg x равна πn. Поэтому ответ записывается следующим образом:
    • x1 = π/3 + 2πn; x2 = 2π/3 + 2πn.
    • Пример 2. соs х = -1/2. Используя таблицу преобразования (или калькулятор), вы получите ответ: х = 2π/3. Единичная окружность дает еще один ответ: -2π/3.
    • x1 = 2π/3 + 2π; х2 = -2π/3 + 2π.
    • Пример 3. tg (x - π/4) = 0.
    • Ответ: х = π/4 + πn.
    • Пример 4. ctg 2x = 1,732.
    • Ответ: х = π/12 + πn.
  • Преобразования, используемые при решении тригонометрических уравнений.

    • Для преобразования тригонометрических уравнений используются алгебраические преобразования (разложение на множители, приведение однородных членов и т.д.) и тригонометрические тождества.
    • Пример 5. Используя тригонометрические тождества, уравнение sin x + sin 2x + sin 3x = 0 преобразуется в уравнение 4cos x*sin (3x/2)*cos (x/2) = 0. Таким образом, нужно решить следующие основные тригонометрические уравнения: cos x = 0; sin (3x/2) = 0; cos (x/2) = 0.
    • Нахождение углов по известным значениям функций.

      • Перед изучением методов решения тригонометрических уравнений вам необходимо научиться находить углы по известным значениям функций. Это можно сделать при помощи таблицы преобразования или калькулятора.
      • Пример: соs х = 0,732. Калькулятор даст ответ х = 42,95 градусов. Единичная окружность даст дополнительные углы, косинус которых также равен 0,732.
    • Отложите решение на единичной окружности.

      • Вы можете отложить решения тригонометрического уравнения на единичной окружности. Решения тригонометрического уравнения на единичной окружности представляют собой вершины правильного многоугольника.
      • Пример: Решения x = π/3 + πn/2 на единичной окружности представляют собой вершины квадрата.
      • Пример: Решения x = π/4 + πn/3 на единичной окружности представляют собой вершины правильного шестиугольника.
    • Методы решения тригонометрических уравнений.

      • Если данное тригонометрическое уравнение содержит только одну тригонометрическую функцию, решите это уравнение как основное тригонометрическое уравнение. Если данное уравнение включает две или более тригонометрические функции, то существуют 2 метода решения такого уравнения (в зависимости от возможности его преобразования).
        • Метод 1.
      • Преобразуйте данное уравнение в уравнение вида: f(x)*g(x)*h(x) = 0, где f(x), g(x), h(x) - основные тригонометрические уравнения.
      • Пример 6. 2cos x + sin 2x = 0. (0 < x < 2π)
      • Решение. Используя формулу двойного угла sin 2x = 2*sin х*соs х, замените sin 2x.
      • 2соs х + 2*sin х*соs х = 2cos х*(sin х + 1) = 0. Теперь решите два основных тригонометрических уравнения: соs х = 0 и (sin х + 1) = 0.
      • Пример 7. cos x + cos 2x + cos 3x = 0. (0 < x < 2π)
      • Решение: Используя тригонометрические тождества, преобразуйте данное уравнение в уравнение вида: cos 2x(2cos x + 1) = 0. Теперь решите два основных тригонометрических уравнения: cos 2x = 0 и (2cos x + 1) = 0.
      • Пример 8. sin x - sin 3x = cos 2x . (0 < x < 2π)
      • Решение: Используя тригонометрические тождества, преобразуйте данное уравнение в уравнение вида: -cos 2x*(2sin x + 1) = 0. Теперь решите два основных тригонометрических уравнения: cos 2x = 0 и (2sin x + 1) = 0.
        • Метод 2.
      • Преобразуйте данное тригонометрическое уравнение в уравнение, содержащее только одну тригонометрическую функцию. Затем замените эту тригонометрическую функцию на некоторую неизвестную, например, t (sin x = t; cos x = t; cos 2x = t, tg x = t; tg (x/2) = t и т.д.).
      • Пример 9. 3sin^2 x - 2cos^2 x = 4sin x + 7 (0 < x < 2π).
      • Решение. В данном уравнении замените (cos^2 x) на (1 - sin^2 x) (согласно тождеству). Преобразованное уравнение имеет вид:
      • 3sin^2 x - 2 + 2sin^2 x - 4sin x - 7 = 0. Замените sin х на t. Теперь уравнение имеет вид: 5t^2 - 4t - 9 = 0. Это квадратное уравнение, имеющее два корня: t1 = -1 и t2 = 9/5. Второй корень t2 не удовлетворяет области значений функции (-1 < sin x < 1). Теперь решите: t = sin х = -1; х = 3π/2.
      • Пример 10. tg x + 2 tg^2 x = ctg x + 2
      • Решение. Замените tg x на t. Перепишите исходное уравнение в следующем виде: (2t + 1)(t^2 - 1) = 0. Теперь найдите t, а затем найдите х для t = tg х.
  • Вы можете заказать подробное решение вашей задачи !!!

    Равенство, содержащее неизвестную под знаком тригонометрической функции (`sin x, cos x, tg x` или `ctg x`), называется тригонометрическим уравнением, именно их формулы мы и рассмотрим дальше.

    Простейшими называются уравнения `sin x=a, cos x=a, tg x=a, ctg x=a`, где `x` — угол, который нужно найти, `a` — любое число. Запишем для каждого из них формулы корней.

    1. Уравнение `sin x=a`.

    При `|a|>1` не имеет решений.

    При `|a| \leq 1` имеет бесконечное число решений.

    Формула корней: `x=(-1)^n arcsin a + \pi n, n \in Z`

    2. Уравнение `cos x=a`

    При `|a|>1` — как и в случае с синусом, решений среди действительных чисел не имеет.

    При `|a| \leq 1` имеет бесконечное множество решений.

    Формула корней: `x=\pm arccos a + 2\pi n, n \in Z`

    Частные случаи для синуса и косинуса в графиках.

    3. Уравнение `tg x=a`

    Имеет бесконечное множество решений при любых значениях `a`.

    Формула корней: `x=arctg a + \pi n, n \in Z`

    4. Уравнение `ctg x=a`

    Также имеет бесконечное множество решений при любых значениях `a`.

    Формула корней: `x=arcctg a + \pi n, n \in Z`

    Формулы корней тригонометрических уравнений в таблице

    Для синуса:
    Для косинуса:
    Для тангенса и котангенса:
    Формулы решения уравнений, содержащих обратные тригонометрические функции:

    Методы решения тригонометрических уравнений

    Решение любого тригонометрического уравнения состоит из двух этапов:

    • с помощью преобразовать его до простейшего;
    • решить полученное простейшее уравнение, используя выше написанные формулы корней и таблицы.

    Рассмотрим на примерах основные методы решения.

    Алгебраический метод.

    В этом методе делается замена переменной и ее подстановка в равенство.

    Пример. Решить уравнение: `2cos^2(x+\frac \pi 6)-3sin(\frac \pi 3 — x)+1=0`

    `2cos^2(x+\frac \pi 6)-3cos(x+\frac \pi 6)+1=0`,

    делаем замену: `cos(x+\frac \pi 6)=y`, тогда `2y^2-3y+1=0`,

    находим корни: `y_1=1, y_2=1/2`, откуда следуют два случая:

    1. `cos(x+\frac \pi 6)=1`, `x+\frac \pi 6=2\pi n`, `x_1=-\frac \pi 6+2\pi n`.

    2. `cos(x+\frac \pi 6)=1/2`, `x+\frac \pi 6=\pm arccos 1/2+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

    Ответ: `x_1=-\frac \pi 6+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

    Разложение на множители.

    Пример. Решить уравнение: `sin x+cos x=1`.

    Решение. Перенесем влево все члены равенства: `sin x+cos x-1=0`. Используя , преобразуем и разложим на множители левую часть:

    `sin x — 2sin^2 x/2=0`,

    `2sin x/2 cos x/2-2sin^2 x/2=0`,

    `2sin x/2 (cos x/2-sin x/2)=0`,

    1. `sin x/2 =0`, `x/2 =\pi n`, `x_1=2\pi n`.
    2. `cos x/2-sin x/2=0`, `tg x/2=1`, `x/2=arctg 1+ \pi n`, `x/2=\pi/4+ \pi n`, `x_2=\pi/2+ 2\pi n`.

    Ответ: `x_1=2\pi n`, `x_2=\pi/2+ 2\pi n`.

    Приведение к однородному уравнению

    Вначале нужно данное тригонометрическое уравнение привести к одному из двух видов:

    `a sin x+b cos x=0` (однородное уравнение первой степени) или `a sin^2 x + b sin x cos x +c cos^2 x=0` (однородное уравнение второй степени).

    Потом разделить обе части на `cos x \ne 0` — для первого случая, и на `cos^2 x \ne 0` — для второго. Получим уравнения относительно `tg x`: `a tg x+b=0` и `a tg^2 x + b tg x +c =0`, которые нужно решить известными способами.

    Пример. Решить уравнение: `2 sin^2 x+sin x cos x — cos^2 x=1`.

    Решение. Запишем правую часть, как `1=sin^2 x+cos^2 x`:

    `2 sin^2 x+sin x cos x — cos^2 x=` `sin^2 x+cos^2 x`,

    `2 sin^2 x+sin x cos x — cos^2 x -` ` sin^2 x — cos^2 x=0`

    `sin^2 x+sin x cos x — 2 cos^2 x=0`.

    Это однородное тригонометрическое уравнение второй степени, разделим его левую и правую части на `cos^2 x \ne 0`, получим:

    `\frac {sin^2 x}{cos^2 x}+\frac{sin x cos x}{cos^2 x} — \frac{2 cos^2 x}{cos^2 x}=0`

    `tg^2 x+tg x — 2=0`. Введем замену `tg x=t`, в результате `t^2 + t — 2=0`. Корни этого уравнения: `t_1=-2` и `t_2=1`. Тогда:

    1. `tg x=-2`, `x_1=arctg (-2)+\pi n`, `n \in Z`
    2. `tg x=1`, `x=arctg 1+\pi n`, `x_2=\pi/4+\pi n`, ` n \in Z`.

    Ответ. `x_1=arctg (-2)+\pi n`, `n \in Z`, `x_2=\pi/4+\pi n`, `n \in Z`.

    Переход к половинному углу

    Пример. Решить уравнение: `11 sin x — 2 cos x = 10`.

    Решение. Применим формулы двойного угла, в результате: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x/2+10 cos^2 x/2`

    `4 tg^2 x/2 — 11 tg x/2 +6=0`

    Применив описанный выше алгебраический метод, получим:

    1. `tg x/2=2`, `x_1=2 arctg 2+2\pi n`, `n \in Z`,
    2. `tg x/2=3/4`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

    Ответ. `x_1=2 arctg 2+2\pi n, n \in Z`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

    Введение вспомогательного угла

    В тригонометрическом уравнении `a sin x + b cos x =c`, где a,b,c — коэффициенты, а x — переменная, разделим обе части на `sqrt {a^2+b^2}`:

    `\frac a{sqrt {a^2+b^2}} sin x +` `\frac b{sqrt {a^2+b^2}} cos x =` `\frac c{sqrt {a^2+b^2}}`.

    Коэффициенты в левой части имеют свойства синуса и косинуса, а именно сумма их квадратов равна 1 и их модули не больше 1. Обозначим их следующим образом: `\frac a{sqrt {a^2+b^2}}=cos \varphi`, ` \frac b{sqrt {a^2+b^2}} =sin \varphi`, `\frac c{sqrt {a^2+b^2}}=C`, тогда:

    `cos \varphi sin x + sin \varphi cos x =C`.

    Подробнее рассмотрим на следующем примере:

    Пример. Решить уравнение: `3 sin x+4 cos x=2`.

    Решение. Разделим обе части равенства на `sqrt {3^2+4^2}`, получим:

    `\frac {3 sin x} {sqrt {3^2+4^2}}+` `\frac{4 cos x}{sqrt {3^2+4^2}}=` `\frac 2{sqrt {3^2+4^2}}`

    `3/5 sin x+4/5 cos x=2/5`.

    Обозначим `3/5 = cos \varphi` , `4/5=sin \varphi`. Так как `sin \varphi>0`, `cos \varphi>0`, то в качестве вспомогательного угла возьмем `\varphi=arcsin 4/5`. Тогда наше равенство запишем в виде:

    `cos \varphi sin x+sin \varphi cos x=2/5`

    Применив формулу суммы углов для синуса, запишем наше равенство в следующем виде:

    `sin (x+\varphi)=2/5`,

    `x+\varphi=(-1)^n arcsin 2/5+ \pi n`, `n \in Z`,

    `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

    Ответ. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

    Дробно-рациональные тригонометрические уравнения

    Это равенства с дробями, в числителях и знаменателях которых есть тригонометрические функции.

    Пример. Решить уравнение. `\frac {sin x}{1+cos x}=1-cos x`.

    Решение. Умножим и разделим правую часть равенства на `(1+cos x)`. В результате получим:

    `\frac {sin x}{1+cos x}=` `\frac {(1-cos x)(1+cos x)}{1+cos x}`

    `\frac {sin x}{1+cos x}=` `\frac {1-cos^2 x}{1+cos x}`

    `\frac {sin x}{1+cos x}=` `\frac {sin^2 x}{1+cos x}`

    `\frac {sin x}{1+cos x}-` `\frac {sin^2 x}{1+cos x}=0`

    `\frac {sin x-sin^2 x}{1+cos x}=0`

    Учитывая, что знаменатель равным быть нулю не может, получим `1+cos x \ne 0`, `cos x \ne -1`, ` x \ne \pi+2\pi n, n \in Z`.

    Приравняем к нулю числитель дроби: `sin x-sin^2 x=0`, `sin x(1-sin x)=0`. Тогда `sin x=0` или `1-sin x=0`.

    1. `sin x=0`, `x=\pi n`, `n \in Z`
    2. `1-sin x=0`, `sin x=-1`, `x=\pi /2+2\pi n, n \in Z`.

    Учитывая, что ` x \ne \pi+2\pi n, n \in Z`, решениями будут `x=2\pi n, n \in Z` и `x=\pi /2+2\pi n`, `n \in Z`.

    Ответ. `x=2\pi n`, `n \in Z`, `x=\pi /2+2\pi n`, `n \in Z`.

    Тригонометрия, и тригонометрические уравнения в частности, применяются почти во всех сферах геометрии, физики, инженерии. Начинается изучение в 10 классе, обязательно присутствуют задания на ЕГЭ, поэтому постарайтесь запомнить все формулы тригонометрических уравнений — они вам точно пригодятся!

    Впрочем, даже запоминать их не нужно, главное понять суть, и уметь вывести. Это не так и сложно, как кажется. Убедитесь сами, просмотрев видео.

    Урок и презентация на тему: "Решение простейших тригонометрических уравнений"

    Дополнительные материалы
    Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

    Пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса от 1С
    Решаем задачи по геометрии. Интерактивные задания на построение в пространстве
    Программная среда "1С: Математический конструктор 6.1"

    Что будем изучать:
    1. Что такое тригонометрические уравнения?

    3. Два основных метода решения тригонометрических уравнений.
    4. Однородные тригонометрические уравнения.
    5. Примеры.

    Что такое тригонометрические уравнения?

    Ребята, мы с вами изучили уже арксинуса, арккосинус, арктангенс и арккотангенс. Теперь давайте посмотрим на тригонометрические уравнения в общем.

    Тригонометрические уравнения – уравнения в котором переменная содержится под знаком тригонометрической функции.

    Повторим вид решения простейших тригонометрических уравнений:

    1)Если |а|≤ 1, то уравнение cos(x) = a имеет решение:

    X= ± arccos(a) + 2πk

    2) Если |а|≤ 1, то уравнение sin(x) = a имеет решение:

    3) Если |а| > 1, то уравнение sin(x) = a и cos(x) = a не имеют решений 4) Уравнение tg(x)=a имеет решение: x=arctg(a)+ πk

    5) Уравнение ctg(x)=a имеет решение: x=arcctg(a)+ πk

    Для всех формул k- целое число

    Простейшие тригонометрические уравнения имеют вид: Т(kx+m)=a, T- какая либо тригонометрическая функция.

    Пример.

    Решить уравнения: а) sin(3x)= √3/2

    Решение:

    А) Обозначим 3x=t, тогда наше уравнение перепишем в виде:

    Решение этого уравнения будет: t=((-1)^n)arcsin(√3 /2)+ πn.

    Из таблицы значений получаем: t=((-1)^n)×π/3+ πn.

    Вернемся к нашей переменной: 3x =((-1)^n)×π/3+ πn,

    Тогда x= ((-1)^n)×π/9+ πn/3

    Ответ: x= ((-1)^n)×π/9+ πn/3, где n-целое число. (-1)^n – минус один в степени n.

    Ещё примеры тригонометрических уравнений.

    Решить уравнения: а) cos(x/5)=1 б)tg(3x- π/3)= √3

    Решение:

    А) В этот раз перейдем непосредственно к вычислению корней уравнения сразу:

    X/5= ± arccos(1) + 2πk. Тогда x/5= πk => x=5πk

    Ответ: x=5πk, где k – целое число.

    Б) Запишем в виде: 3x- π/3=arctg(√3)+ πk. Мы знаем что: arctg(√3)= π/3

    3x- π/3= π/3+ πk => 3x=2π/3 + πk => x=2π/9 + πk/3

    Ответ: x=2π/9 + πk/3, где k – целое число.

    Решить уравнения: cos(4x)= √2/2. И найти все корни на отрезке .

    Решение:

    Решим в общем виде наше уравнение: 4x= ± arccos(√2/2) + 2πk

    4x= ± π/4 + 2πk;

    X= ± π/16+ πk/2;

    Теперь давайте посмотрим какие корни попадут на наш отрезок. При k При k=0, x= π/16, мы попали в заданный отрезок .
    При к=1, x= π/16+ π/2=9π/16, опять попали.
    При k=2, x= π/16+ π=17π/16, а тут вот уже не попали, а значит при больших k тоже заведомо не будем попадать.

    Ответ: x= π/16, x= 9π/16

    Два основных метода решения.

    Мы рассмотрели простейшие тригонометрические уравнения, но существуют и более сложные. Для их решения применяют метод ввода новой переменной и метод разложения на множители. Давайте рассмотрим примеры.

    Решим уравнение:

    Решение:
    Для решения нашего уравнения воспользуемся методом ввода новой переменной, обозначим: t=tg(x).

    В результате замены получим: t 2 + 2t -1 = 0

    Найдем корни квадратного уравнения: t=-1 и t=1/3

    Тогда tg(x)=-1 и tg(x)=1/3, получили простейшее тригонометрическое уравнение, найдем его корни.

    X=arctg(-1) +πk= -π/4+πk; x=arctg(1/3) + πk.

    Ответ: x= -π/4+πk; x=arctg(1/3) + πk.

    Пример решения уравнения

    Решить уравнений: 2sin 2 (x) + 3 cos(x) = 0

    Решение:

    Воспользуемся тождеством: sin 2 (x) + cos 2 (x)=1

    Наше уравнение примет вид:2-2cos 2 (x) + 3 cos (x) = 0

    2 cos 2 (x) - 3 cos(x) -2 = 0

    Введем замену t=cos(x): 2t 2 -3t - 2 = 0

    Решением нашего квадратного уравнения являются корни: t=2 и t=-1/2

    Тогда cos(x)=2 и cos(x)=-1/2.

    Т.к. косинус не может принимать значения больше единицы, то cos(x)=2 не имеет корней.

    Для cos(x)=-1/2: x= ± arccos(-1/2) + 2πk; x= ±2π/3 + 2πk

    Ответ: x= ±2π/3 + 2πk

    Однородные тригонометрические уравнения.

    Определение: Уравнение вида a sin(x)+b cos(x) называются однородными тригонометрическими уравнениями первой степени.

    Уравнения вида

    однородными тригонометрическими уравнениями второй степени.

    Для решения однородного тригонометрического уравнения первой степени разделим его на cos(x): Делить на косинус нельзя если он равен нулю, давайте убедимся что это не так:
    Пусть cos(x)=0, тогда asin(x)+0=0 => sin(x)=0, но синус и косинус одновременно не равны нулю, получили противоречие, поэтому можно смело делить на ноль.

    Решить уравнение:
    Пример: cos 2 (x) + sin(x) cos(x) = 0

    Решение:

    Вынесем общий множитель: cos(x)(c0s(x) + sin (x)) = 0

    Тогда нам надо решить два уравнения:

    Cos(x)=0 и cos(x)+sin(x)=0

    Cos(x)=0 при x= π/2 + πk;

    Рассмотрим уравнение cos(x)+sin(x)=0 Разделим наше уравнение на cos(x):

    1+tg(x)=0 => tg(x)=-1 => x=arctg(-1) +πk= -π/4+πk

    Ответ: x= π/2 + πk и x= -π/4+πk

    Как решать однородные тригонометрические уравнения второй степени?
    Ребята, придерживайтесь этих правил всегда!

    1. Посмотреть чему равен коэффициент а, если а=0 то тогда наше уравнение примет вид cos(x)(bsin(x)+ccos(x)), пример решения которого на предыдущем слайде

    2. Если a≠0, то нужно поделить обе части уравнения на косинус в квадрате, получим:


    Делаем замену переменной t=tg(x) получаем уравнение:

    Решить пример №:3

    Решить уравнение:
    Решение:

    Разделим обе части уравнения на косинус квадрат:

    Делаем замену переменной t=tg(x): t 2 + 2 t - 3 = 0

    Найдем корни квадратного уравнения: t=-3 и t=1

    Тогда: tg(x)=-3 => x=arctg(-3) + πk=-arctg(3) + πk

    Tg(x)=1 => x= π/4+ πk

    Ответ: x=-arctg(3) + πk и x= π/4+ πk

    Решить пример №:4

    Решить уравнение:

    Решение:
    Преобразуем наше выражение:


    Решать такие уравнение мы умеем: x= - π/4 + 2πk и x=5π/4 + 2πk

    Ответ: x= - π/4 + 2πk и x=5π/4 + 2πk

    Решить пример №:5

    Решить уравнение:

    Решение:
    Преобразуем наше выражение:


    Введем замену tg(2x)=t:2 2 - 5t + 2 = 0

    Решением нашего квадратного уравнения будут корни: t=-2 и t=1/2

    Тогда получаем: tg(2x)=-2 и tg(2x)=1/2
    2x=-arctg(2)+ πk => x=-arctg(2)/2 + πk/2

    2x= arctg(1/2) + πk => x=arctg(1/2)/2+ πk/2

    Ответ: x=-arctg(2)/2 + πk/2 и x=arctg(1/2)/2+ πk/2

    Задачи для самостоятельного решения.

    1) Решить уравнение

    А) sin(7x)= 1/2 б) cos(3x)= √3/2 в) cos(-x) = -1 г) tg(4x) = √3 д) ctg(0.5x) = -1.7

    2) Решить уравнения: sin(3x)= √3/2. И найти все корни на отрезке [π/2; π ].

    3) Решить уравнение: ctg 2 (x) + 2ctg(x) + 1 =0

    4) Решить уравнение: 3 sin 2 (x) + √3sin (x) cos(x) = 0

    5) Решить уравнение:3sin 2 (3x) + 10 sin(3x)cos(3x) + 3 cos 2 (3x) =0

    6)Решить уравнение:cos 2 (2x) -1 - cos(x) =√3/2 -sin 2 (2x)

    Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

    Сбор и использование персональной информации

    Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

    От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

    Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

    Какую персональную информацию мы собираем:

    • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

    Как мы используем вашу персональную информацию:

    • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
    • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
    • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
    • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

    Раскрытие информации третьим лицам

    Мы не раскрываем полученную от Вас информацию третьим лицам.

    Исключения:

    • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
    • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

    Защита персональной информации

    Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

    Соблюдение вашей конфиденциальности на уровне компании

    Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

    Решение простейших тригонометрических уравнений.

    Решение тригонометрических уравнений любого уровня сложности в конечном итоге сводится к решению простейших тригонометрических уравнений. И в этом наилучшим помощником снова оказывается тригонометрический круг.

    Вспомним определения косинуса и синуса.

    Косинусом угла называется абсцисса (то есть координата по оси ) точки на единичной окружности, соответствующей повороту на данный угол .

    Синусом угла называется ордината (то есть координата по оси ) точки на единичной окружности, соответствующей повороту на данный угол .

    Положительным направлением движения по тригонометрическому кругу считается движение против часовой стрелки. Повороту на 0 градусов (или 0 радиан) соответствует точка с координатами (1;0)

    Используем эти определения для решения простейших тригонометрических уравнений.

    1. Решим уравнение

    Этому уравнению удовлетворяют все такие значения угла поворота , которые соответствуют точкам окружности, ордината которых равна .

    Отметим на оси ординат точку с ординатой :


    Проведем горизонтальную линию параллельно оси абсцисс до пересечения с окружностью. Мы получим две точки, лежащие на окружности и имеющие ординату . Эти точки соответствуют углам поворота на и радиан:


    Если мы, выйдя из точки, соответствующей углу поворота на радиан, обойдем полный круг, то мы придем в точку, соответствующую углу поворота на радиан и имеющую ту же ординату. То есть этот угол поворота также удовлетворяет нашему уравнению. Мы можем делать сколько угодно "холостых" оборотов, возвращаясь в ту же точку, и все эти значения углов будут удовлетворять нашему уравнению. Число "холостых" оборотов обозначим буквой (или ). Так как мы можем совершать эти обороты как в положительном, так и в отрицательном направлении, (или ) могут принимать любые целые значения.

    То есть первая серия решений исходного уравнения имеет вид:

    , , - множество целых чисел (1)

    Аналогично, вторая серия решений имеет вид:

    , где , . (2)

    Как вы догадались, в основе этой серии решений лежит точка окружности, соответствующая углу поворота на .

    Эти две серии решений можно объединить в одну запись:

    Если мы в этой записи возьмем (то есть четное ), то мы получим первую серию решений.

    Если мы в этой записи возьмем (то есть нечетное ), то мы получим вторую серию решений.

    2. Теперь давайте решим уравнение

    Так как - это абсцисса точки единичной окружности, полученной поворотом на угол , отметим на оси точку с абсциссой :


    Проведем вертикальную линию параллельно оси до пересечения с окружностью. Мы получим две точки, лежащие на окружности и имеющие абсциссу . Эти точки соответствуют углам поворота на и радиан. Вспомним, что при движении по часовой стрелки мы получаем отрицательный угол поворота:


    Запишем две серии решений:

    ,

    ,

    (Мы попадаем в нужную точку, пройдя из основной полный круг, то есть .

    Объедим эти две серии в одну запись:

    3. Решим уравнение

    Линия тангенсов проходит через точку с координатами (1,0) единичной окружности параллельно оси OY

    Отметим на ней точку, с ординатой равной 1 (мы ищем, тангенс каких углов равен 1):


    Соединим эту точку с началом координат прямой линией и отметим точки пересечения прямой с единичной окружностью. Точки пересечения прямой и окружности соответствуют углам поворота на и :


    Так как точки, соответствующие углам поворота, которые удовлетворяют нашему уравнению, лежат на расстоянии радиан друг от друга, то мы можем записать решение таким образом:

    4. Решим уравнение

    Линия котангенсов проходит через точку с координатами единичной окружности параллельно оси .

    Отметим на линии котангенсов точку с абсциссой -1:


    Соединим эту точку с началом координат прямой и продолжим ее до пересечения с окружностью. Эта прямая пересечет окружность в точках, соответствующих углам поворота на и радиан:


    Поскольку эти точки отстоят друг от друга на расстояние, равное , то общее решение этого уравнения мы можем записать так:

    В приведенных примерах, иллюстрирующих решение простейших тригонометрических уравнений были использованы табличные значения тригонометрических функций.

    Однако, если в правой части уравнения стоит не табличное значение, то мы в общее решение уравнения подставляем значение :





    ОСОБЫЕ РЕШЕНИЯ:

    Отметим на окружности точки, ордината которых равна 0:


    Отметим на окружности единственную точку, ордината которой равна 1:


    Отметим на окружности единственную точку, ордината которой равна -1:


    Так как принято указывать значения, наиболее близкие у нулю, решение запишем так:

    Отметим на окружности точки, абсцисса которых равна 0:


    5.
    Отметим на окружности единственную точку, абсцисса которой равна 1:


    Отметим на окружности единственную точку, абсцисса которой равна -1:


    И чуть более сложные примеры:

    1.

    Синус равен единице, если аргумент равен

    Аргумент у нашего синуса равен , поэтому получим:

    Разделим обе части равенства на 3:

    Ответ:

    2.

    Косинус равен нулю, если аргумент косинуса равен

    Аргумент у нашего косинуса равен , поэтому получим:

    Выразим , для этого сначала перенесем вправо с противоположным знаком:

    Упростим правую часть:

    Разделим обе части на -2:

    Заметим, что перед слагаемым знак не меняется, поскольку k может принимать любые целые значения.

    Ответ:

    И в заключение посмотрите видеоурок "Отбор корней в тригонометрическом уравнении с помощью тригонометрической окружности"

    На этом разговор о решении простейших тригонометрических уравнений мы закончим. Следующий раз мы с вами поговорим о том, как решать .


    Самое обсуждаемое
    Памяти аслана масхадова посвящается Памяти аслана масхадова посвящается
    Какие экзамены нужно сдавать на архитектора Какие экзамены нужно сдавать на архитектора
    Сказка и притча в сказке-притче Тема «Произведения о семье Сказка и притча в сказке-притче Тема «Произведения о семье


    top