Виды титрования в аналитической химии. Титриметрический анализ. Методы исследования в аналитической химии

Виды титрования в аналитической химии. Титриметрический анализ. Методы исследования в аналитической химии

Лекция 7. Титриметрический метод анализа.

1. Сущность титриметрического метода анализа

2. Классификация титриметрических методов анализа

3. Расчеты в титриметрии. Стандартные и рабочие растворы

4. Погрешности титриметрического метода

5. Построение кривых титрования.

Титриметрический метод анализа основан на том, что вещества реагируют друг с другом в эквивалентных количествах:

где n 1 и n 2 количества вещества 1 и 2, [ n]= моль

где C молярная концентрация эквивалента;· V объем раствора [ V ]= л

Тогда для двух стехиометрически реагирующих веществ справедливо соотношение:

Титриметрический анализ – метод определения количества вещества путем точного измерения объема растворов веществ, вступающих между собой в реакцию.

Титр – количество г вещества содержащегося в 1 мл раствора или эквивалентное определяемому веществу. Например, если титр H2SO4 равен 0,0049 г/мл, это значит, что каждый мл раствора содержит 0,0049 г. серной кислоты.

Раствор, титр которого известен, называется титрованным Титрование – процесс добавления к исследуемому раствору или его аликвотной части эквивалентного количества титрованного раствора. При этом используются стандартные растворы – растворы с точной концентрацией вещества (Na2CO3, HCl).

Реакция титрования должна отвечать следующим требованиям:

1) Реакция должна протекать количественно, быть строго стехиометричной

2) Реакция должна протекать с высокой скоростью;


3) Реакция должна протекать до конца, должны отсутствовать конкурирующие процессы;

4) Для данной реакции должен существовать удобный способ фиксирования конца реакции (точки эквивалентности).

Например, кислотно-основное титрование:

HCl + NaOH → NaCl + H2O (индикатор метилоранж)

Классификация методов титриметрического анализа.

Классифицировать титриметрические методы анализа можно по нескольким признакам. Например, по типу основной реакции, протекающей при титровании:

1) кислотно-основное титрование (нейтрализация): H3O+ + OH - ↔ 2H2O

этим методом определяют количество кислоты или щёлочи в анализируемом растворе;

а) ацидиметрия

б) алкалиметрия

2) окислительно-восстановительное титрование (редоксиметрия):

Ox1 + Red2 ↔ Ox2 + Red1

а) перманганатометрия (KMnO4);

б) йодометрия (I2);

в) броматометрия (KBrO3);

г) дихроматометрия (K2Cr2O7);

д) цериметрия (Ce(SO4)2);

е) ванадометрия (NH4VO3);

ж) титанометрия (TiCl3) и т. д.

3) осадительное титрование: Me + X ↔ MeX↓

а) аргентометрия Ag+ + Cl - " AgCl $

б) меркурометрия

4) комплексометрическое титрование Mem+ + nL ↔ m+

а) меркуриметрия

б) комплексонометрия (ЭДТА)

Главная задача титриметрического анализа – не только использовать раствор точно известной концентрации, но и правильно определить точку эквивалентности. Существует несколько способов зафиксировать точку эквивалентности:

1. По собственной окраске ионов определяемого элемента, например перманганат ионы MnO 4 - имеют малиновую окраску

2. С помощью индикаторов например, при реакции нейтрализации используют кислотно-щелочные индикаторы: лакмус, фенолфталеин, метил оранж – органические соединения изменяющие окраску при переходе от кислой к щелочной среде.

Индикаторы – органические красители, которые меняют свою окраску при изменении кислотности среды. Схематически (опуская промежуточные формы) равновесие индикатора можно представить как кислотно-основную реакцию

HIn +H2O In - + H3O+

На область перехода окраски индикатора (положение и интервал) влияют все факторы, от которых зависит константа равновесия (ионная сила, температура, посторонние вещества, растворитель), а также индикатора.

3. По веществу-свидетелю

Пример: Ag+ + Cl - " AgCl $

Ag+ + CrO4" Ag2CrO4$ (ярко оранжевая окраска)

В колбу, где требуется определить ион хлора, добавляют небольшое количество соли K2CrO4 (свидетель). Затем из бюретки постепенно добавляют исследуемое вещество, при этом первыми в реакцию вступают ионы хлора и образуется белый осадок (AgCl), т. е. ПР AgCl << ПР Ag2Cr O4.

Таким образом, лишняя капля нитрата серебра даст ярко оранжевую окраску, т. к. весь хлор уже прореагировал.

Способы титрования.

1. прямое титрование, при прямом титровании титрант непосредственно добавляют к титруемому веществу. Такой способ применим только при выполнении всех требований, перечисленных выше.

2. обратное титрование (с избытком), используется при медленно протекающей реакции. Если скорость реакции мала, или не удается подобрать индикатор, или наблюдаются побочные эффекты, например потери определяемого вещества вследствие летучести, можно использовать прием обратного титрования : добавить к определяемому веществу заведомый избыток титранта Т1, довести реакцию до конца, а затем найти количество непрореагировавшего титранта титрованием его другим реагентом Т2 с концентрацией С2. очевидно, что на определяемое вещество затрачивается количество титранта Т1, равное разности СТ1VT1 = СT2VT2.


3. косвенное титрование (по замещению), применяется при анализе органических соединений. Если реакция нестехиометрична или протекает медленно, то используют титрование заместителя, для чего проводят химическую реакцию определяемого вещества с вспомогательным реагентом, а получающийся в эквивалентном количестве продукт оттитровывают подходящим титрантом.

Способы выражения концентрации раствора.

Молярная концентрация – моль/ л

1М – в 1 литре находится 1 г/моль вещества

Молярная концентрация эквивалентов (нормальные растворы) (раствор должен содержать в 1 л заданное число эквивалентных масс).

Химическим эквивалентом называется количество вещества эквивалентное одному г атома водорода .

Титр раствора Т

Титр по рабочему веществу: https://pandia.ru/text/79/035/images/image004_113.gif" width="133" height="48 src="> [г/мл]

Титр по рабочему веществу надо перевести в титр по определяемому веществу, воспользовавшись фактором пересчёта: Tonp = Tраб· F

Пример: https://pandia.ru/text/79/035/images/image006_73.gif" width="72" height="46 src=">

а – навеска анализируемого вещества

Стандартные и рабочие растворы

Титрант с известной концентрацией называют стандартным раствором. По способу приготовления различают первичные и вторичные стандартные растворы. Первичный стандартный раствор готовят растворением точно количества химически чистого вещества известного стехиометрического состава в определенном объеме растворителя. Вторичный стандартный раствор получают следующим образом: готовят раствор с приблизительной концентрацией и определяют его концентрацию (стандартизируют) по подходящему первичному стандарту.

Первичные стандартные вещества должны отвечать ряду требований:

1. Состав вещества должен строго соответствовать химической формуле. Содержание примесей менее 0,05%

2. Вещество должно быть устойчивым при комнатной температуре, быть не гигроскопичным, не окисляться кислородом воздуха, не поглощать углекислый газ, быть не летучим.

3. Вещество должно иметь достаточно высокую молекулярную массу, чтобы уменьшить погрешность при взвешивании.

Для приготовления первичных стандартных раствором можно воспользоваться фиксаналом – ампулой, в которой запаяно известное количество стандартного вещества или раствора.

КЫРГЫЗСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ им. Ж. БАЛАСАГЫНА

ФАКУЛЬТЕТ ХИМИИ И ХИМИЧЕСКОЙ ТЕХНОЛОГИ

Кафедра ЮНЕСКО по экологическому образованию и естественным наукам

РЕФЕРАТ

по дисциплине : Аналитическая химия

на тему :

МЕТОД НЕЙТРАЛИЗАЦИИ В ТИТРИМЕТРИЧЕСКОМ МЕТОДЕ АНАЛИЗА

Студентки II курса гр. хт-1-08

ФИО: Байтанаевой А.

Преподаватель: доцент Ли С.П.

Бишкек-2010г.

Введение

Аналитическая химия. Методы определения

Титриметрический метод анализа

Приготовление титрованного раствора

Титрование. Индикаторы

Методы установления точек эквивалентности. Классификация методов титриметрического анализа

Посуды, применяемые для титрования

Вычисления в объемном анализе

Методы кислотно-основного титрования, или методы нейтрализации

Заключение

Использованная литература

Введение

Аналитическая химия является фундаментальной химической наукой, занимающей видное место в ряду других химических дисциплин. Вместе с тем аналитическая химия теснейшим образом связана с повседневной практикой, поскольку без данных анализа о содержании в сырье или конечном продукте основных компонентов и примесей невозможно грамотное проведение технологического процесса в металлургической, химической, фармацевтической и многих других отраслях промышленности.

Данные химического анализа требуются при решении экономических и других важных вопросов.

Современное развитие аналитической химии, обусловленное в значительной мере прогрессом различных отраслей производства.

Аналитическая химия. Методы определения

аналитический химия титриметрический нейтрализация

Аналитическая химия- это наука об определении химического состава веществ и отчасти их химической структуры. Методы, которые создает аналитическая химия, позволяют отвечать на вопросы о том, из чего состоит вещество, какие компоненты входят в его состав. Аналитические методы часто дают возможность узнавать, в какой форме данный компонент присутствует в веществе, например, каково состояние окисления элемента.

Методы определения можно классифицировать, основываясь на свойстве вещества, которое положено в основу определения. Если измеряется масса осадка, метод называется гравиметрическим, если определяется интенсивность окраски раствора, - фотометрическим, а если величина ЭДС,- потенциометрическим.

Методы определения часто делят на химические (классические), физико-химические (инструментальные) и физические .

Химическими в аналитической химии принято называть главным образом гравиметрические и титриметрические методы. Эти методы наиболее старые, но широко распространенные до настоящего времени, играющие важную роль в практике химического анализа.

Гравиметрический (весовой) анализ - измерение массы определяемого вещества или его составных частей, выделяемых в химически чистом состоянии или в виде соответствующих соединений.

Титриметрический (объемный) анализ - измерение объема израсходованного на реакцию реактива точно известной концентрации.

Физико-химические и физические методы анализа обычно делят на следующие группы:

1) электрохимические

2) спектральные (оптические)

) хроматографические

) радиометрические

) масс-спектрометрические

Титриметрический метод анализа

Титриметрическим методом анализа называют метод количественного анализа, основанный на измерении количества реагента, требующегося для завершения реакции с данным количеством определяемого вещества.

Метод заключается в том, что к раствору определяемого вещества постепенно прибавляют раствор реактива известной концентрации. Добавление реактива продолжают до тех пор, пока его количество не станет эквивалентным количеству реагирующего с ним определяемого вещества.

Количественные определения с помощью объемного метода выполняются очень быстро. Время, требуемое для завершения определения титриметрическим методом, измеряется минутами. Это позволяет без особой затраты труда проводить несколько последовательных и параллельных определений.

Основоположником титриметрического анализа является французский ученый Ж.Л.Гей-Люссак.

Химический элемент, простое или сложное вещество, содержание которого определяют в данном образце анализируемого продукта, называют определяемым веществом .

К определяемым веществам относят также атомы, ионы, связанные свободные радикалы и функциональные группы.

Твердое, жидкое или газообразное вещество, вступающее в реакцию с определенным веществом, называют реагентом .

Титрование - это приливание одного раствора к другому при непрерывном смешивании. Концентрация одного раствора точна известна.

Титрант (стандартный или титрованный раствор) - это раствор с точно известной концентрацией.

Нормальность раствора N - количество грамм-эквивалента вещества, содержащегося в 1л раствора.

N 1 V 1 =N 2 V 2

Титр (Т) - точная концентрация стандартного раствора (титранта).

Выражают числом граммов растворенного вещества, содержащегося в 1мл раствора, г/мл.

В аналитической химии титр - один из способов выражения концентрации раствора.

N- нормальность раствора, г-экв/л

Э- эквивалент растворенного вещества

Т- титр, г/см 3 (мл).

Химические элементы или их соединения вступают в химические реакции друг с другом в строго определенных весовых количествах, соответствующих их химическим эквивалентам (грамм-эквивалентам).

Другими словами, грамм-эквивалент одного вещества реагирует с одним грамм-эквивалентом другого вещества.

Приготовление титрованного раствора по точной навеске исходного вещества

Первым способом приготовления раствора точно известной концентрации, т.е. характеризующегося определенным титром, является растворение точной навески исходного химически чистого вещества в воде или другом растворителе и разбавление полученного раствора до требуемого объема. Зная массу растворенного в воде химически чистого соединения и объем полученного раствора, легко вычислить титр (Т) приготовленного реактива, в г/мл:

Этим способом готовят титрованные растворы таких веществ, которые можно легко получить в чистом виде и состав которых отвечает точно определенной формуле и не изменяется в процессе хранения. Взвешивание вещества проводят в бюксе. Таким путем нельзя приготовить титрованные растворы веществ, которые отличаются большой гигроскопичностью, легко теряют кристаллизационную воду, подвергаются действию двуокиси углерода воздуха и т.д.

Приготовление титрованных растворов по "фиксаналу"

Очень часто на практике для приготовления титрованных растворов используют приготовленные на химических заводах или в специальных лабораториях точно отвешенные количества твердых химически чистых соединений или точно отмеренные объемы их растворов определенной нормальности.

Для приготовления требуемого титрованного раствора ампулу разбивают над специальной воронкой, снабженной пробивным устройством, содержимое ее количественно переводят в мерную колбу и доводят объем водой до метки.

Обычно в ампулах содержится 0,1г-экв вещества, т.е. столько, сколько требуется для приготовления 1л 0,1н. раствора.

Титрование

Титрование проводят следующим образом. Бюретку заполняют рабочим раствором до нулевого деления так, чтобы в нижнем конце ее не было пузырьков воздуха. Исследуемый раствор отмеряют пипеткой и переносят в коническую колбу. Сюда же вливают несколько капель раствора индикатора, за исключением тех случаев, когда один из взятых растворов является индикатором. К раствору в колбе постепенно приливают раствор из бюретки до изменения окраски раствора в колбе. Сначала раствор из бюретки приливают тонкой струей, непрерывно перемешивая титруемый раствор вращением колбы. По мере титрования рабочий раствор приливают все медленнее и к концу титрования его добавляют уже по каплям.

Необходимо во время титрования левой рукой управлять зажимом бюретки, а правой одновременно вращать колбу с титруемой жидкостью, перемешивая, таким образом, титруемый раствор.

Результаты титрования будут правильными, если в конце титрования окраска титруемого раствора резко изменится от одной капли рабочего раствора. Чтобы переход окраски раствора был лучше заметен, колбу с титруемым раствором во время титрования помещают на белую подставку.

После каждого титрования отсчитывают по шкале бюретки объем затраченного рабочего раствора и результат отсчета записывают в лабораторный журнал. Каждый раствор титруют не менее трех раз, результаты титрования не должны отличаться друг от друга более чем на 0,1 мл. Концентрацию раствора вычисляют по среднему значению.

Индикаторы

Индикаторами называются вещества, при помощи которых устанавливают момент эквивалентности между титруемыми растворами. В качестве индикаторов чаще всего применяют вещества, способные давать с одним из реагирующих веществ легко заметную цветную реакцию. Например, крахмал, взаимодействуя с раствором йода, окрашивается в интенсивно синий цвет. Следовательно, крахмал- индикатор на свободный йод. Один и тот же индикатор в различных условиях часто приобретает различную окраску. Например, фенолфталеин в кислой и нейтральной среде бесцветен, а в щелочной среде принимает красно-фиолетовую окраску.

Иногда индикатором служит непосредственно одно из реагирующих веществ. Например, раствор окислителя KMnO 4 в кислой среде при постепенном прибавлении восстановителя к нему обесцвечивается. Как только в растворе появится избыточная капля KMnO 4 , раствор окрасится в бледно-розовый цвет.

Методы установления точек эквивалентности

Установление конечной точки титрования или точки эквивалентности представляет собой важнейшую операцию титриметрического метода анализа, так как от точности определения точки эквивалентности зависит точность результатов анализа. Обычно конец титрования устанавливают по изменению окраски титруемого раствора или индикатора, вводимого в начале или в процессе титрования. Применят также и безиндикаторные методы, основанные на использовании специальных приборов, позволяющих судить об изменениях, которые происходят в титруемом растворе в процессе титрования. Такие методы называют физико-химическими или инструментальными методами определения точек эквивалентности. Они основаны на измерении электропроводности, значений потенциалов, оптической плотности и других физико-химических параметров титруемых растворов, которые резко изменяются в точке эквивалентности.

Точку эквивалентности можно определить следующими методами:

)визуально - по изменению цвета раствора, если определяемое вещество или реагент окрашены; так как в точке эквивалентности концентрация определяемого вещества уменьшается до минимума, а концентрация реагента начинает повышаться.

) визуально - по появлению помутнения или по изменению окраски раствора, вызываемой образованием продуктов реакции, или индикатора, если они бесцветны.

) физико-химическими методами с последующим анализом кривых титрования, отражающих происходящие в процессе титрования изменения физико-химических параметров титруемых растворов независимо от окраски. Точку эквивалентности устанавливают по пересечению кривых или по скачку кривой титрования.

Классификация титрования

)Метод нейтрализации основан на использовании реакций нейтрализации кислот, оснований, солей слабых кислот или слабых оснований, сильно гидролизирующихся в водных растворах, разнообразных неорганических и органических соединений, проявляющих в неводных растворах кислые или основные свойства, и др.

)Метод окисления-восстановления основан на использовании реакций окисления-восстановления элементов, способных переходить из низших степеней окисления в высшие, и наоборот, а также ионов и молекул, которые реагируют с окислителями или восстановителями, не подвергаясь непосредственному окислению или восстановлению.

)Метод осаждения основан на использовании реакций осаждения.

)Метод комплексообразования основан на использовании реакций комплексообразования, из которых наиболее широко применяют реакции ионов металлов с так называемыми комплексонами.

Посуды, применяемые для титрования

Мерные колбы служат для измерения объемов растворов, приготовления растворов определенной концентрации. Объем жидкости, вмещаемой колбой, выражают в миллилитрах. На колбе указывают ее емкость и температуру(20 0 С), при которой эта емкость измерена.

Мерные колбы бывают различной емкости: от 25 до 2000 мл.

Пипетки служат для отмеривания небольших объемов растворов и перенесения определенного объема раствора из одного сосуда в другой. Объем жидкости, вмещаемой пипеткой, выражают в миллилитрах. На расширенной части пипетки указывают ее емкость и температуру (обычно 20 0 С), при которой эта емкость измерена.

Пипетки бывают различной емкости: от 1 до 100мл.

Измерительные пипетки небольшой емкости не имеют расширения и градуированы на 0,1-1мл.


Бюретки представляют собой узкие, градуированные по длине цилиндрические стеклянные трубки. Один конец бюретки сужен и снабжен стеклянным краном или резиновой трубкой, соединенной с капилляром, через который из бюретки выливается раствор. Резиновая трубка зажимается снаружи металлическим зажимом. При надавливании на зажим указательным и большим пальцами, из бюретки выливается жидкость.

Хорошо вымытую бюретку 2-3 раза ополаскивают дистиллированной водой, а затем раствором, которым ее будут наполнять. В капилляре крана не должно оставаться пузырьков воздуха. При отсчетах делений глаз наблюдателя должен находиться на уровне мениска. Объем светлых жидкостей отсчитывают по нижнему мениску, темных, например, KMnO 4 , I 2 ,- по верхнему.

Коническая колба

Мерные цилиндры

Вычисление в объемном анализе

Грамм-эквивалент

Грамм-эквивалентом называется количество граммов вещества, эквивалентное (химически равноценное) грамм-атому или грамм-иону водорода в данной реакции. Из этого определения следует, что грамм-эквивалент одного и того же вещества в разных реакциях может быть различный. Например, Na 2 CO 3 с кислотой может реагировать двояко:

Na 2 CO 3 +HCI= NaНСО 3 +NaCI (1) 2 CO 3 +2HCI= NaCI +Н 2 СО 3 (2)

В реакции (1) одна грамм-молекула Na 2 CO 3 реагирует с одной грамм-молекулой HCI, что соответствует одному грамм-атому водорода. В этой реакции грамм-эквивалент Na 2 CO 3 равен молю М(Na 2 CO 3), что выражается равенством Э(Na 2 CO 3)= М(Na 2 CO 3). В реакции (2) одна грамм-молекула Na 2 CO 3 реагирует с двумя молями HCI. Следовательно,

Э(Na 2 CO 3)= =53 г.

Нормальные и молярные растворы

Нормальность раствора N - количество грамм-эквивалента вещества, содержащегося в 1л раствора.

Молярность раствора указывает, сколько молей растворенного вещества содержится в 1л раствора.

Зная концентрацию раствора, выраженную в граммах на определенный объем, можно вычислить нормальность и молярность его:

Пример : В 250 мл раствора гидроокиси кальция содержится 3,705 г Са (ОН) 2 . Вычислить нормальность и молярность раствора.

Решение : Сначала вычислим, сколько граммов Са (ОН) 2 содержится в 1л раствора:

3,705г Са (ОН) 2 - 250 мл Х=14,82 г/л

Х г Са (ОН) 2 - 1000 мл

Найдем грамм-молекулу и грамм-эквивалент:

М(Са (ОН) 2)=74,10 г. Э(Са (ОН) 2)=37,05г.

Нормальность раствора:

05г/л - 1н. Х=0,4н.

14,82г/л - Х н.

Молярность раствора:

10г/л - 1моль Х=0,2М

82г/л - Х моль

Зная нормальность или молярность раствора, можно вычислить его титр.

Пример : Вычислить титр 0,1н. раствора H 2 SO 4 по NaOH.

Решение :

ТH 2 SO 4 / NaOH =г/мл

В объемном анализе применяют несколько методов вычисления.

) Вычисление нормальности анализируемого раствора по нормальности рабочего раствора . При взаимодействии двух веществ NaOH грамм-эквивалент одного вещества реагирует с грамм-эквивалентом другого. Растворы различных веществ одной и той же нормальности содержат в равных объемах одинаковое число грамм-эквивалентов растворенного вещества. Следовательно, одинаковые объемы таких растворов содержат эквивалентные количества вещества. Поэтому, например, для нейтрализации 10 мл 1н. HCI требуется затратить ровно 10 мл 1н. раствора NaOH.

Растворы одинаковой нормальности вступают в реакцию в равных объемах.

Зная нормальность одного из двух реагирующих растворов и их объемы, расходуемые на титрование друг друга, легко определить неизвестную нормальность второго раствора. Обозначим нормальность первого раствора через N 2 и его объем через V 2 . Тогда на основании сказанного можно составить равенство:

V 1 N 1 =V 2 N 2

Пример. Определить нормальность раствора соляной кислоты, если известно, что для нейтрализации 30,00 мл ее потребовалось 28,00 мл 0,1100 н. раствора NaOH.

Решение .

HCI V HCI =N NaOH V NaOH

N HCI = =.

) Вычисление количества определяемого вещества по титру рабочего раствора, выраженному в граммах определяемого вещества. Титр рабочего раствора в граммах определяемого вещества равен числу граммов определяемого вещества, которое эквивалентно количеству вещества, содержащегося в 1 мл рабочего раствора. Зная титр рабочего раствора по определяемому веществу T= и объем рабочего раствора, израсходованного на титрование, можно вычислить число граммов (массу) определяемого вещества.

Пример. Вычислить процентное содержание Na 2 CO 3 в образце, если для титрования навески 0, 100 гр. израсходовано 15,00 мл 0,1н. HCI.

Решение .

М (Na 2 CO 3) =106,00 гр. Э(Na 2 CO 3) =53,00 гр.

Т(HCI/ Na 2 CO 3)= =г/мл(Na 2 CO 3) = Т(HCI/ Na 2 CO 3) V HCI =0,0053*15,00=0,0795 г.

Процентное содержание Na 2 CO 3 равно

3) Вычисление числа миллиграмм-эквивалентов исследуемого вещества. Помножив нормальность рабочего раствора на объем его, израсходованный на титрование исследуемого вещества, получим число миллиграмм-эквивалентов растворенного вещества в оттитрованной части исследуемого вещества. Масса определяемого вещества равна:

(гр.)

Статистическая обработка результатов анализа

При анализе веществ (проб) обычно проводят несколько параллельных определений. При этом отдельные результаты определений должны быть близкими по величине и соответствовать истинному содержанию компонентов (элементов) в исследуемом веществе (пробе).

Существуют два фактора, по которым аналитик судит о полученных результатах анализа

1) Воспроизводимость полученных результатов.

2) Соответствие их составу вещества (пробы)

Воспроизводимость результатов анализа зависит от случайных ошибок анализа. Чем больше случайная ошибка, тем больше разброс значений при повторении анализа. Случайная ошибка может иметь размерность измеряемых величин (мг, мг/л) или же может быть выражена в процентах. Следовательно, воспроизводимость определяет вероятность того, что результаты последующих измерений окажутся в некотором заданном интервале, в центре которого находится среднее значение всех определений, выполненных данным методом.

В отличие от случайных ошибок, систематические ошибки влияют на все измерения всегда в одинаковой степени.

Цель всех аналитических определений и исследований сводится к нахождению результатов, наиболее близких к истинному составу или к истинному содержанию компонентов пробы.

Для оценки точности или надежности результатов аналитических определений пользуются статистической обработкой результатов и вычисляют следующие величины:

1) Среднее арифметическое

) Дисперсию

Среднюю квадратичную ошибку

S =

3) Среднюю квадратичную ошибку среднего арифметического

a=0, 95; R=2

4)
Доверительный интервал

Методы кислотно-основного титрования, или методы нейтрализации

Методы нейтрализации основаны на применении реакций нейтрализации. Основным уравнением процесса нейтрализации в водных растворах является взаимодействие ионов гидроксония (или водорода) с ионами гидроксила, сопровождающееся образованием слабодиссоциированных молекул воды:

H 3 O + +OH - →2H 2 O или

H + +OH - →H 2 O

Методы нейтрализации позволяют количественно определять кислоты (с помощью титрованных растворов щелочей), основания (с помощью титрованных растворов кислот) и другие вещества, реагирующие в стехиометрических соотношениях с кислотами и основаниями в водных растворах.

Техника определения состоит в том, что к определенному количеству раствора основания (или кислоты) постепенно приливают из бюретки титрованный раствор кислоты (или основания) до наступления точки эквивалентности. Количество основания (или кислоты), содержащееся в исследуемом растворе, вычисляют по объему титрованного раствора кислоты (или основания), израсходованного на нейтрализацию определенного объема раствора анализируемого образца или навески исследуемого продукта.

Кислотность или щелочность раствора определяют c помощью индикаторов. Для проявления окраски достаточно добавить в исследуемый раствор всего лишь 1-2 капли 0,1% раствора индикатора. Цвета различных индикаторов в растворах кислот и щелочей приведены в таблице.

Таблица 1.Окраска индикаторов в растворах щелочей и кислот.


Рассмотрим конкретный пример. Пусть имеется раствор NaOH неизвестной концентрации. 10,0 мл этого раствора поместили в колбу и добавили 1 каплю слабого раствора фенолфталеина. Раствор окрасился в малиновый цвет (рис.1а).

Титрование сильной кислоты сильным основанием

А) Приготовление 0,1 н. раствора HCI

Для приготовления 0,1н. раствора HCI берут кислоту меньшей концентрации, примерно 20%-ную. Определяют плотность ее ареометром (она равна 1,140), для этого кислоту наливают в высокий стеклянный цилиндр, диаметр которого превышает диаметра шарика ареометра. Осторожно опускают ареометр в жидкость и следят за тем, чтобы он свободно плавал, не касаясь стенок цилиндра. Отсчет ведут по шкале ареометра. Деление шкалы, совпадающее с уровнем жидкости, показывает плотность раствора. Затем узнают процентную концентрацию (по справочнику) и рассчитывают, сколько этой кислоты следует брать, чтобы получить 500 мл 0,1н. раствора HCI.

C (HCI) =28, 18%

Расчет навески на объем мерной колбы (250мл.)

m = = 36, 5 * 0, 1 * 0, 25=0, 92 гр.HCI.

гр. исходной кислоты содержится --- 28,18 гр. х.ч. HCI.

Х гр. --- 0,92 гр. HCI.

Х = 3,2 гр. х.ч. HCI.

Чтобы не отвешивать соляную кислоту, а отмерить мензуркой, вычислим объем 28,18%-ной кислоты, необходимый для приготовления раствора. Для этого массу 28,18%-ной кислоты делим на плотность:

V = = =2, 8 мл. HCI

Затем отмеряют 2,8 мл кислоты, переносят в мерную колбу на 500 мл и доводят объем раствора до метки, и, закрыв колбу пробкой, перемешивают. Получив примерно 0,1 н. раствор HCI, устанавливают титр и нормальную концентрацию его по раствору тетрабората натрия.

Б) Приготовление 0,1н. раствора тетрабората натрия (буры)

Для определения титра раствора HCI берут кристаллогидрат тетрабората натрия. Это соль удовлетворяет почти всем требованиям, предъявляемым к исходным веществам, но относительно мало растворяется в холодной воде. Для установки титра HCI или серной кислоты используют перекристаллизованный продукт.

При растворении тетрабората натрия в воде протекает реакция гидролиза:

В 4 О 7 2- + 5H 2 O D 2H 2 BO 3 - + 2H 3 BO 3

H 2 BO 3 ионы, в свою очередь, подвергаются гидролизу:

H 2 BO 3 - +H 2 OD OH - + H 3 BO 3

Ионы оттитровываются кислотой, и гидролиз идет до конца. Суммарно реакцию титрования можно выразить уравнением:

В 4 О 7 2- +2H + +5 H 2 OD 4H 3 BO 3

Э (Na 2 B 4 O 7 10H 2 O) =190, 6

1000мл (H 2 O) --- 190, 6 гр. (Na 2 B 4 O 7 10H 2 O) Х=95, 3гр. (Na 2 B 4 O 7 10H 2 O)

500 мл (H 2 O) --- Х гр. (Na 2 B 4 O 7 10H 2 O)

95, 3 гр. --- 1н. Х=9, 5гр. (Na 2 B 4 O 7 10 H 2 O )

Х гр. --- 0,1н.

Для растворения тетрабората натрия наливают в колбу примерно ½ объема колбы дистиллированной воды, нагревают на водяной бане, перемешивая содержимое колбы вращательным движением до полного растворения соли. После растворения колбу с тетраборатом натрия охлаждают до комнатной температуры и доводят до метки дистиллированной водой, сначала небольшими, а затем по каплям, применяя капиллярную пипетку. Закрыв колбу пробкой, тщательно перемешивают.

При расчете титра и нормальной концентрации раствора тетрабората натрия используют формулы:

Т(Na 2 B 4 O 7 10H 2 O)= (г/мл)

N (Na 2 B 4 O 7 10H 2 O) = (г-экв/л)

В) Определение титра раствора HCI по тетраборату натрия методом пипетирования .

Берут чистую пипетку на 10 мл, ополаскивают раствором тетрабората натрия (из мерной колбы). Наполняют пипетку раствором до метки и переносят для титрования в другую колбу, добавляют 2-3 капли индикатора метилового оранжевого. Бюретку перед титрованием промывают два раза небольшим количеством HCI и затем наполняют ее, доводя мениск до нулевой черты. Проверив, нет ли в капиллярной трубке ("носике") пузырьков воздуха, начинают титровать до появления бледно-красного цвета. Титрование повторяют 3 раза и вычисляют среднюю величину.

титрование15,0 мл HCI

2 титрование 14,8 мл HCI V СР =14,76 мл

3 титрование 14,5 мл HCI

После титрования проводят вычисление нормальной концентрации раствора HCI. Нормальность кислоты вычисляют по среднему значению из трех определений. Расчет ведут по формуле:

N СОЛИ V СОЛИ= N КИСЛ V КИСЛ

N HCI =

N HCI == 0, 06775 (г-экв/л)

Г) Приготовление титрованного раствора гидроксида натрия

Реактивы гидроксида натрия нередко содержат примеси карбоната натрия, и поэтому для точных работ раствор щелочи должен быть химически чистым.

При определении титра раствора гидроксида натрия по хлороводородной кислоте берут мерную колбу на 100 мл. Неизвестной количестве NaOH приливают дистиллированную воду до метки, закрывают пробкой и перемешивают. Затем пипеткой на 10 мл берут раствор щелочи из мерной колбы и переносят в колбу для титрования, прибавляют 2-3 капли Фенолфталеина и титруют хлороводородной кислотой до обесцвечивания. Титрование повторяют 3 раза и рассчитывают среднюю величину.

Е титрование- 1,8 мл

2-е титрование- 1,7 мл V СР = 1,7 мл

3-е титрование- 1,6 мл

Т HCI / NaOH = = = 0,00271 г/мл

m NaOH =

1) m NaOH ==0,04878 гр.

) m NaOH = 0,00271*1,7*10=0,04606 гр.

) m NaOH = 0,00271*1,6*10=0,04336 гр.

Статистическая обработка результатов анализа

(X i - ) 10 - 3 (X i - ) 10 - 6 Условия

0,000001


) S 2 = = =4*10 -6

3) S = ==2*10 -3

) = ==1, 1*10 -3

6) åa=ta, R S= 4,303*1, 1*10 -3 =4*10 -3

7) a= ±åa=(0,04606±4*10 - 3)

Определение гидроксида натрия и карбоната натрия при совместном их присутствии

Гидроксиды натрия и калия из воздуха поглощают СО 2 и превращаются в карбонаты:

NaOH + СО 2 ŽNa 2 CO 3 + H 2 O

Поэтому как твердое вещество, так и растворы этих реагентов часто имеют примесь карбонатов. В лабораторной практике нередко приходится определять карбонат натрия в присутствии гидроксида натрия. Для этого можно применять 2 способа: первый - фиксированием (на кривой титрования Na 2 CO 3) двух точек эквивалентности (способ Уордера); второй- титрованием раствора NaOH, осадив сначала карбонат-ион CO 3 2- при помощи иона бария Ba 2+ (способ Винклера).

По первому способу титрование смеси карбоната натрия и гидроксида натрия хлороводородной кислотой выражается следующими уравнениями:

NaOH + Na 2 CO 3 +2HCI g 2NaCI + NaHCO 3 + H 2 O 3 + HCIg NaCI+ H 2 O+ СО 2 h

Первая фаза заканчивается при pH8,3 в области перехода окраски индикатора фенолфталеина, а вторая при pH3,85 в интервале изменения окраски метилового оранжевого. Следовательно, в первой точке эквивалентности оттитровывают с фенолфталеином весь NaOH и половину Na 2 CO 3 , а во второй оставшуюся половину карбоната натрия дотитровывают с метиловым оранжевым.

Взятие навески NaOH

Расчет навески на объем мерной колбы (250 мл):

Mr (NaOH) =40 m= ==1 гр . NaOH

Э(NaОH)= 40 г.

Взятие навески Na 2 CO 3

Mr (Na 2 CO 3) =106 m= =53*0, 1*0, 25= 1,3 гр . Na 2 CO 3

Э(Na 2 CO 3)=53 г

Ход работы

Навеску NaOH и Na 2 CO 3 , помещают в мерную колбу на 250 мл, растворяют дистиллированной водой и доводят объем до метки.

Затем берут пипеткой 10 мл данного раствора, переносят в другую колбу и добавляют 4-5 капель 0,1% раствора фенолфталеина, и титруют раствором HCI до обесцвечивания.

Затраченное количество HCI отмеряют по бюретке и записывают. Затем прибавляют в эту же колбу с раствором 2-3 капли метилового оранжевого, получают желтую окраску анализируемого раствора и титруют из той же бюретки HCI до появления оранжевого окрашивания. Снова делают отсчет по бюретке. Титрование повторяют 3 раза и, как всегда берут среднюю величину.

а) титрование с фенолфталеином:

1) 12,2 мл HCI

) 12,1 мл HCI V ср = 12,06мл HCI

2. N NaOH = NaOH ==0,048 (г-экв/л)

Вычисляем количество граммов гидроксида натрия, находящегося в 250 мл раствора:

m ==0, 6775(г)

Т акже вычисляются концентрация раствора и количество карбоната натрия:

N (Na 2 CO 3) ==0, 06715 (г-экв/л) = =0, 8976 (г)

Д ля повышения точности анализа рекомендуется: а) титрование с фенолфталеином вести осторожно, особенно к концу, чтобы уменьшить возможность образования угольной кислоты; б) уменьшить поглощение СО 2 из воздуха анализируемым раствором, для чего не следует давать стоять раствору в открытой колбе до титрования, осторожно перемешивать его в процессе титрования.

Контрольная работа

Титрование с фенолфталеином:

1) 4, 4 мл HCI

2) 4,4 мл HCI

3) 4,6 мл HCI

Титрование с метиловым оранжевым:

1) 6,3 мл HCI

2) 6,4 мл HCI

3) 6,3 мл HCI

1) Следовательно, на титрование NaOH и половины Na 2 CO 3 израсходовали 4,6 мл HCI, а на весь NaOH и Na 2 CO 3 - 6,6мл HCI;

на половину Na 2 CO 3 - (6,3-4,4)=1,9мл

на все количество Na 2 CO 3 - (1,9*2)=3,8мл

2) на титрование NaOH и половины Na 2 CO 3 израсходовали 4,8 мл HCI, а на весь NaOH и Na 2 CO 3 6,7мл HCI.

на половину Na 2 CO 3 -(6,4-4,4) =2мл

на все количество Na 2 CO 3 - (2*2)=4 мл

на титрование NaOH - (6,4-4)=2,4 мл

) на титрование NaOH и половины Na 2 CO 3 израсходовали 5мл HCI, а на весь NaOH и Na 2 CO 3 6,8 мл HCI.

на половину Na 2 CO 3 - (6,3-4,6)= 1,7 мл

на все количество Na 2 CO 3 - (2*1,7) =3,4 мл

на титрование NaOH - (6,3-3,4)=2,9 мл

T HCI / NaOH = =г/мл

m NaOH =

) m NaOH =0, 0027*2, 5*10=0,0675гр.

) m NaOH =0, 0027*2,4*10=0,0648гр.

) m NaOH =0, 0027*2,9*10=0,0783гр.
=3

Использованная литература

1) Васильев В.П. Аналитическая химия, часть I Москва 1989

2) Золотов Ю.А. Аналитическая химия: проблемы и достижения Москва 1992

) Крешков А.П. Основы аналитической химии, часть II

) Логинов, Шапиро С.А. Аналитическая химия Москва1971

Введение

Лабораторный практикум выполняется после изучения теоретического курса «Аналитическая химия и ФХМА» и служит для закрепления и углубления полученных знаний.

Задачей количественного анализа является определение количества (содержания) элементов (ионов), радикалов, функциональных групп, соединений или фаз в анализируемом объекте . В этом курсе рассматриваются основные методы титриметрического (объемного) анализа, способы титрования и их практическое применение.

Прежде чем приступить к выполнению лабораторного практикума, студенты проходят инструктаж по технике безопасности. Перед выполнением каждой работы студент должен сдать коллоквиум по разделам, указанным преподавателем, а также по методике проведения анализа. Для этого необходимо:

1) повторить соответствующий раздел курса;

2) подробно ознакомиться с методикой проведения работы;

3) составить уравнения химических реакций, лежащих в основе проводимого химического анализа;

4) изучить особенности проведения анализа с точки зрения техники безопасности.

По результатам работы студенты составляют отчёт, в котором должны быть указаны:

· название работы;

· цель работы;

· теоретические основы метода: сущность метода, основное уравнение, расчеты и построение кривых титрования, выбор индикатора;

· реактивы и оборудование, используемые в ходе проведения работы;

· методика анализа:

Приготовление первичных стандартов;

Приготовление и стандартизация рабочего раствора;

Определение содержания исследуемого вещества в растворе;

· экспериментальные данные;

· статистическая обработка результатов анализа;

· выводы.

ТИТРИМЕТРИЧЕСКИЕ МЕТОДЫ АНАЛИЗА



Титриметрический метод анализа основан на измерении объема реагента точно известной концентрации (титранта), затраченного на химическую реакцию с определяемым веществом.

Процедура определения (титрование) состоит в том, что к точно известному объему раствора определяемого вещества с неизвестной концентрацией из бюретки по каплям добавляют титрант, до наступления точки эквивалентности.

где X – определяемое вещество; R – титрант, P – продукт реакции.

Точка эквивалентности (т.э.) – это теоретическое состояние раствора, наступающее в момент добавления эквивалентного количества титранта R к определяемому веществу X . На практике титрант добавляют к определяемому веществу до достижения конечной точкой титрования (к.т.т.), под которой понимают при визуальной индикации точки эквивалентности момент изменения окраски индикатора, добавленного в раствор. Кроме визуальной индикации точка эквивалентности может быть зарегистрирована инструментальными способами. В этом случае под конечной точкой титрования (к.т.т.) понимают момент резкого изменения физической величины, измеряемой в процессе титрования (сила тока, потенциал, электропроводность и т. д.).

В титриметрическом методе анализа используются следующие типы химических реакций: реакции нейтрализации, реакции окисления-восстановления, реакции осаждения и реакции комплексообразования.

В зависимости от типа применяемой химической реакции различают следующие методы титриметрического анализа:

– кислотно-основное титрование;

– осадительное титрование;

– комплексонометрическое титрование или комплексонометрия;

– окислительно-восстановительное титрование или редоксиметрия.

К реакциям, применяемым в титриметрическом методе анализа, предъявляют следующие требования:

· реакция должна протекать в стехиометрических соотношениях, без побочных реакций;

· реакция должна протекать практически необратимо (≥ 99,9 %), константа равновесия реакции К р >10 6 , образующиеся осадки должны иметь растворимость S < 10 -5 моль/дм 3 , а образующиеся комплексы – К уст > 10 -6 ;

· реакция должна протекать с достаточно большой скоростью;

· реакция должна протекать при комнатной температуре;

· точка эквивалентности должна фиксироваться четко и надежно каким-либо способом.

Способы титрования

В любом методе титриметрического анализа существует несколько способов титрования. Различают прямое титрование, обратное титрование и титрование по замещению .

Прямое титрование – к раствору определяемого вещества добавляют по каплям титрант до достижения точки эквивалентности.

Схема титрования: X + R = P .

Закон эквивалентов для прямого титрования:

C (1/ z) Х V Х = C (1/ z) R V R . (2)

Количество (массу) определяемого вещества, содержащееся в исследуемом растворе, вычисляют, используя закон эквивалентов (для прямого титрования)

m Х = C (1/z)R V R M (1/z) Х ٠10 -3 , (3)

где C (1/ z) R – молярная концентрация эквивалента титранта, моль/дм 3 ;

V R – объем титранта, см 3 ;

M (1/ z ) Х – молярная масса эквивалента определяемого вещества;

C (1/ z) Х – молярная концентрация эквивалента определяемого вещества, моль/дм 3 ;

V Х – объем определяемого вещества, см 3 .

Обратное титрование – используют два титранта. Сначала
к анализируемому раствору добавляют точный объем первого титранта (R 1 ), взятый в избытке. Остаток непрореагировавшего титранта R 1 оттитровывают вторым титрантом (R 2 ). Количество титранта R 1 , израсходованного
на взаимодействие с анализируемым веществом (Х ) определяют по разности между добавленным объемом титранта R 1 (V 1 ) и объемом титранта R 2 (V 2 ) затраченного на титрование остатка титранта R 1 .

Схема титрования: X + R 1 фиксированный избыток = P 1 (R 1 остаток).

R 1 остаток + R 2 = P 2 .

При использовании обратного титрования закон эквивалентов записывается следующим образом:

Массу определяемого вещества в случае обратного титрования вычисляют по формуле

Способ обратного титрования применяется в тех случаях, когда для прямой реакции невозможно подобрать подходящий индикатор или она протекает с кинетическими затруднениями (низкая скорость химической реакции).

Титрование по замещению (косвенное титрование) – применяют в тех случаях, когда прямое или обратное титрование определяемого вещества невозможно или вызывает затруднения либо отсутствует подходящий индикатор.

К определяемому веществу Х добавляют какой-либо реагент А в избытке, при взаимодействии с которым выделяется эквивалентное количество вещества Р . Затем продукт реакции Р оттитровывают подходящим титрантом R .

Схема титрования: X + А избыток = P 1.

P 1 + R = P 2.

Закон эквивалентов для титрования по замещению записывают следующим образом:

Так как число эквивалентов определяемого вещества Х и продукта реакции Р одинаковы, расчет массы определяемого вещества в случае косвенного титрования вычисляют по формуле

m Х = C (1/z) R V R M (1/z) Х ٠10 -3 . (7)

Реактивы

1. Янтарная кислота Н 2 С 4 Н 4 О 4 (х.ч.) – первичный стандарт.

2. Раствор гидроксида натрия NaOH с молярной концентрацией
~2,5 моль/дм 3

3. Н 2 О дистиллированная.

Оборудование студенты описывают самостоятельно.

Ход выполнения работы:

1. Приготовление первичного стандарта янтарной кислоты HOOCCH 2 CH 2 COOH.

Янтарную кислоту готовят объемом 200,00 см 3 с молярной концентрацией эквивалента моль/дм 3 .

г/моль.

Уравнение реакции:

Взятие навески (взвешивание):

Масса навески

Навеску количественно переносят в мерную колбу ( см 3), добавляют 50 – 70 см 3 дистиллированной воды, перемешивают до полного растворения янтарной кислоты, доводят до метки дистиллированной водой
и тщательно перемешивают.

рассчитывают
по формуле

Реактивы

1. Карбонат натрия Na 2 CO 3 (х.ч.) – первичный стандарт.

2. Н 2 О дистиллированная.

3. Хлороводородная кислота НСl концентрации 1:1 (r=1,095 г/см 3).

4. Кислотно-основной индикатор (выбирают по кривой титрования).

5. Смешанный индикатор – метиловый оранжевый и метиленовый синий.

Ход выполнения работы:

1. Приготовление первичного стандарта карбоната натрия (Na 2 CO 3).

Раствор карбоната натрия готовят объёмом 200,00 см 3 с молярной концентрацией эквивалента моль/дм 3 .

Расчет массы навески, г: (масса берется с точностью до четвертого знака после запятой).

Уравнения реакции:

1) Na 2 CO 3 + HCl = NaHCO 3 + NaCl

2) NaHCO 3 + HCl = NaCl + H 2 O + CO 2

_____________________________________

Na 2 CO 3 +2HCl = 2NaCl + H 2 O + CO 2

H 2 CO 3 – слабая кислота (K a1 = 10 -6,35 , K a2 = 10 -10,32).

Взятие навески (взвешивание):

Масса часового стекла (стакана)

Масса часового стекла (стакана) с навеской

Масса навески

Навеску количественно переносят в мерную колбу ( см 3), добавляют 50 – 70 см 3 дистиллированной воды, перемешивают до полного растворения карбоната натрия, доводят до метки дистиллированной водой
и тщательно перемешивают.

Фактическую концентрацию первичного стандарта рассчитывают
по формуле

2. Приготовление и стандартизация титранта (раствора HCl)

Раствор хлороводородной кислоты готовят объемом примерно 500 см 3
с молярной концентрацией эквивалента примерно 0,05÷0,06 моль/дм 3)

Титрант – раствор хлороводородной кислоты приблизительной концентрацией 0,05 моль/дм 3 готовят из хлороводородной кислоты, разбавленной 1:1 (r=1,095 г/см 3).

Стандартизацию раствора HCl проводят по первичному стандарту Na 2 CO 3 прямым титрованием, способом пипетирования.

Индикатор выбирают по кривой титрования карбоната натрия хлороводородной кислотой (рис. 4).

Рис. 4. Кривая титрования 100,00 см 3 раствора Na 2 CO 3 с С = 0,1000 моль/дм 3 раствором HCl с С 1/ z = 0,1000 моль/дм 3

При титровании до второй точки эквивалентности используют индикатор метиловый оранжевый, 0,1%-ный водный раствор (рТ = 4,0). Изменение окраски от желтой до оранжевой (цвет «чайной розы»). Интервал перехода
(рН = 3,1 – 4,4) .

Схема 3. Стандартизация раствора HCl

В коническую колбу для титрования вместимостью 250 см 3 помещают аликвоту 25,00 см 3 стандартного раствора Na 2 CO 3 (пипеткой), добавляют 2 – 3 капли метилового оранжевого, разбавляют водой до 50 – 75 см 3 и титруют раствором хлороводородной кислоты до перехода окраски из желтой в цвет «чайной розы» от одной капли титранта. Титрование проводят в присутствии «свидетеля» (исходный раствор Na 2 CO 3 с индикатором). Результаты титрования заносят в табл. 4. Концентрацию хлороводородной кислоты определяют по закону эквивалентов: .

Таблица 4

Результаты стандартизации раствора соляной кислоты

Задачи

1. Сформулируйте понятие эквивалента в кислотно-основных реакциях . Вычислите величину эквивалентов соды и фосфорной кислоты в следующих реакциях:

Na 2 CO 3 + HCl = NaHCO 3 +NaCl

Na 2 CO 3 + 2HCl = 2NaCl + CO 2 + H 2 O

H 3 PO 4 + NaOH = NaH 2 PO 4 + H 2 O

H 3 PO 4 + 2NaOH = Na 2 HPO 4 + H 2 O

H 3 PO 4 + 3NaOH = Na 3 PO 4 + 3H 2 O

2. Напишите уравнения реакций между соляной кислотой, серной кислотой, гидроксидом натрия, гидроксидом алюминия, карбонатом натрия, гидрокарбонатом калия и рассчитайте эквивалентную массу этих веществ.

3. Постройте кривую титрования 100,00 см 3 соляной кислоты с молярной концентрацией эквивалента 0,1 моль/дм 3 гидроксидом натрия с молярной концентрацией эквивалента 0,1 моль/дм 3 . Выберите возможные индикаторы

4. Постройте кривую титрования 100,00 см 3 акриловой кислоты (CH 2 =CHCOOH, pK a = 4,26) с молярной концентрацией эквивалента
0,1 моль/дм 3 гидроксидом натрия с молярной концентрацией эквивалента
0,1 моль/дм 3 . Как изменяется состав раствора в процессе титрования? Выберите возможные индикаторы и рассчитайте индикаторную погрешность титрования.

5. Постройте кривую титрования гидразина (N 2 H 4 +H 2 O, pK b = 6,03)
с молярной концентрацией эквивалента 0,1 моль/дм 3 соляной кислотой
с молярной концентрацией эквивалента 0,1 моль/дм 3 . В чем сходство
и различие расчетов рН и кривой титрования в сравнении с кривой титрования слабой кислоты щелочью? Выберите возможные индикаторы
и рассчитайте индикаторную погрешность титрования.

6. Вычислите коэффициенты активности и активные концентрации ионов
в 0,001 М растворе сульфата алюминия, 0,05 М карбоната натрия, 0,1 М хлорида калия.

7. Вычислите рН 0,20 М раствора метиламина, если его ионизация в водном растворе описывается уравнением

В + Н 2 О = ВН + + ОН - , К b = 4,6 ×10 - 3 , где В – основание.

8. Вычислить константу диссоциации хлорноватистой кислоты HOCl, если 1,99 × 10 - 2 М раствор имеет рН = 4,5.

9. Вычислите рН раствора, содержащего 6,1 г/моль гликолевой кислоты (СH 2 (OH)COOH, К а = 1,5 × 10 - 4).

10. Вычислите рН раствора, полученного смешением 40 мл 0,015 М раствора хлороводородной кислоты с:

а) 40 мл воды;

б) 20 мл 0,02 М раствора гидроксида натрия;

в) 20 мл 0,02 М раствора гидроксида бария;

г) 40 мл 0,01 М раствора хлорноватистой кислоты, К а =5,0 × 10 - 8 .

11. Вычислите концентрацию ацетат-иона в растворе уксусной кислоты
c массовой долей 0,1 %.

12. Вычислите концентрацию иона аммония в растворе аммиака c массовой долей 0,1 %.

13. Рассчитайте массу навески карбоната натрия, необходимую для приготовления 250,00 мл 0,5000 М раствора .

14. Рассчитайте объем раствора соляной кислоты с молярной концентрацией эквивалента 11 моль/л и объем воды, которые необходимо взять для приготовления 500 мл 0,5 М раствора соляной кислоты.

15. В 300 мл 0,3 %-ного раствора хлороводородной кислоты растворили 0,15 г металлического магния. Вычислите молярную концентрацию ионов водорода, магния и хлора в полученном растворе.

16. При смешении 25,00 мл раствора серной кислоты с раствором хлорида бария получено 0,2917 г сернокислого бария. Определите титр раствора серной кислоты.

17. Вычислить массу карбоната кальция, вступившего в реакцию
с 80,5 ммоль хлороводородной кислоты.

18. Сколько граммов однозамещенного фосфата натрия надо добавить
к 25,0 мл 0,15 М раствора гидроксида натрия, чтобы получить раствор с рН=7? Для фосфорной кислоты pK а1 = 2,15; pK а2 = 7,21; pK а3 = 12,36.

19. На титрование 1,0000 г дымящейся серной кислоты, тщательно разбавленной водой, расходуется 43,70 мл 0,4982 М раствора гидроксида натрия. Известно, что дымящаяся серная кислота содержит серный ангидрид, растворенный в безводной серной кислоте. Вычислить массовую долю серного ангидрида в дымящей серной кислоте.

20. Абсолютная погрешность измерения объема с помощью бюретки составляет 0,05 мл. Рассчитать относительную погрешность измерения объемов в 1; 10 и 20 мл.

21. В мерной колбе вместимостью 500,00 мл приготовлен раствор
из навески 2,5000 г карбоната натрия. Вычислить:

а) молярную концентрацию раствора;

б) молярную концентрацию эквивалента (½ Na 2 CO 3);

в) титр раствора;

г) титр по соляной кислоте.

22. Какой объем 10 %-ного раствора карбоната натрия плотностью
1,105 г/см 3 нужно взять для приготовления:

а) 1 л раствора с титром ТNa 2 CO 3 = 0,005000 г/см 3 ;

б) 1 л раствора с ТNa 2 CO 3 /HCl = 0,003000 г/см 3 ?

23. Какой объем соляной кислоты с массовой долей 38,32 % и плотностью 1,19 г/см 3 следует взять для приготовления 1500 мл 0,2 М раствора?

24. Какой объем воды нужно добавить к 1,2 л 0,25 М HCl, чтобы приготовить 0,2 М раствор?

25. Из 100 г технического гидроксида натрия, содержащего 3 % карбоната натрия и 7 % индифферентных примесей, приготовили 1л раствора. Вычислить молярную концентрацию и титр по соляной кислоте полученного щелочного раствора, считая, что карбонат натрия титруется до угольной кислоты.

26. Имеется образец, в котором может содержаться NaOH, Na 2 CO 3 , NaHCO 3 или смесь названных соединений массой 0,2800 г. Пробу растворили в воде.
На титрование полученного раствора в присутствии фенолфталеина расходуется 5,15 мл, а в присутствии метилового оранжевого – 21,45 мл соляной кислоты с молярной концентрацией эквивалента 0,1520 моль/л. Определить состав образца и массовые доли компонентов в образце.

27. Постройте кривую титрования 100,00 см 3 0,1000 М раствора аммиака 0,1000 М раствором соляной кислоты, обоснуйте выбор индикатора.

28. Вычислите рН точки эквивалентности, начала и конца титрования 100,00 см 3 0,1000 М раствора малоновой кислоты (HOOCCH 2 COOH) 0,1000 М раствором гидроксида натрия (рК а 1 =1,38; рК а 2 =5,68).

29. На титрование 25,00 см 3 раствора карбоната натрия с молярной концентрацией эквивалента 0,05123 моль/дм 3 пошло 32,10 см 3 соляной кислоты. Вычислите молярную концентрацию эквивалента соляной кислоты.

30. Сколько мл 0,1 М раствора хлорида аммония необходимо добавить
к 50,00 мл 0,1 М раствора аммиака, чтобы получился буферный раствор
с рН=9,3.

31. Смесь серной и фосфорной кислот перенесли в мерную колбу объемом 250,00 см 3 . Для титрования взяли две пробы по 20,00 см 3 , одну оттитровали раствором гидроксида натрия с молярной концентрацией эквивалента
0,09940 моль/дм 3 с индикатором метилоранжем, а вторую с фенолфталеином. Расход гидроксида натрия в первом случае составил 20,50 см 3 , а во втором 36,85 см 3 . Определите массы серной и фосфорной кислот в смеси.

В комплексонометрии

До точки эквивалентности =(C M V M – C ЭДТА V ЭДТА)/(V М +V ЭДТА). (21)

В точке эквивалентности = . (22)

После точки эквивалентности = . (23)

На рис. 9 показаны кривые титрования иона кальция в буферных растворах с различными значениями рН. Видно, что титрование Са 2+ возможно только при рН ³ 8.

Реактивы

2. Н 2 О дистиллированная.

3. Стандартный раствор Mg (II) с молярной концентрацией
0,0250 моль/дм 3 .

4. Аммиачный буфер с рН = 9,5.

5. Раствор гидроксида калия КОН с массовой долей 5%.

6. Эриохром черный Т, индикаторная смесь.

7. Калькон, индикаторная смесь.

Теоретические основы метода:

Метод основан на взаимодействии ионов Са 2+ и Мg 2+ с динатриевой солью этилендиаминтетрауксусной кислоты (Na 2 H 2 Y 2 или Na-ЭДТА) с образованием прочных комплексов в молярном отношении M:L=1:1 в определённом интервале рН.

Для фиксирования точки эквивалентности при определении Са 2+ и Мg 2+ используют калькон и эриохром черный Т.

Определение Са 2+ проводят при рН ≈ 12, при этом Mg 2+ находится
в растворе в виде осадка гидроксида магния и не титруется ЭДТА.

Mg 2+ + 2OH - = Mg(OH) 2 ↓

Са 2+ + Y 4- « CaY 2-

При рН ≈ 10 (аммиачный буферный раствор) Мg 2+ и Са 2+ находятся
в растворе в виде ионов и при добавлении ЭДТА титруются совместно.

Ca 2+ + HY 3- « CaY 2- + H +

Mg 2+ + HY 3- « MgY 2- +H +

Для определения объема ЭДТА, затраченного на титрование Mg 2+ ,
из суммарного объёма, пошедшего на титрование смеси при рН ≈ 10, вычитают объём, пошедший на титрование Са 2+ при рН ≈ 12.

Для создания рН ≈ 12 применяют 5% – ный раствор KOH, для создания
рН ≈ 10 используют аммиачный буферный раствор (NH 3 ×H 2 O + NH 4 Cl).

Ход выполнения работы:

1. Стандартизация титранта – раствора ЭДТА (Na 2 H 2 Y)

Раствор ЭДТА готовят приблизительной концентрации 0,025 М
из ≈ 0,05 М раствора, разбавляя его дистиллированной водой в 2 раза. Для стандартизации ЭДТА применяют стандартный раствор MgSO 4
c концентрацией 0,02500 моль/дм 3 .

Схема 5. Стандартизация титранта – раствора ЭДТА

В коническую колбу для титрования вместимостью 250 см 3 помещают 20,00 cм 3 стандартного раствора MgSO 4 c концентрацией 0,02500 моль/дм 3 , добавляют ~ 70 см 3 дистиллированной воды, ~ 10 см 3 аммиачного буферного раствора с рН ~ 9,5 – 10 и вносят индикатор эриохром чёрный Т около 0,05 г
(на кончике шпателя). При этом раствор окрашивается в винно-красный цвет. Раствор в колбе медленно титрируют раствором ЭДТА до перехода окраски из винно-красной в зелёную. Результаты титрования заносят в табл. 6. Концентрацию ЭДТА определяют по закону эквивалентов: .

Таблица 6

Результаты стандартизации раствора ЭДТА

2. Определение содержания Са 2+

Кривые титрования Са 2+ раствором ЭДТА при рН=10 и рН=12 строят самостоятельно.

Раствор задачи в мерной колбе доводят до метки дистиллированной водой и тщательно перемешивают.

Схема 6. Определение содержания Са 2+ в растворе

В коническую колбу для титрования вместимостью 250 см 3 помещают аликвоту исследуемого раствора 25,00 см 3 , содержащую кальций и магний, добавляют ~ 60 см 3 воды, ~ 10 см 3 5% – ного раствора КОН. После выпадения аморфного осадка Mg(OH) 2 ↓ в раствор вносят индикатор калькон около 0,05 г (на кончике шпателя) и медленно титруют раствором ЭДТА до перехода окраски из розовой в бледно-голубую. Результаты титрования (V 1) заносят в табл.7.

Таблица 7

№ опыта Объем ЭДТА, см 3 Содержание Са 2+ в растворе, г
25,00
25,00
25,00
25,00
25,00

3. Определение содержания Mg 2+

Кривую титрования Mg 2+ раствором ЭДТА при рН=10 строят самостоятельно.

Схема 7. Определение содержания Mg 2+ в растворе

В коническую колбу для титрования вместимостью 250 см 3 помещают аликвоту 25,00 см 3 исследуемого раствора, содержащую кальций и магний, добавляют ~ 60 см 3 дистиллированной воды, ~ 10 см 3 аммиачного буферного раствора с рН ~ 9,5–10 и вносят индикатор эриохром чёрный Т около 0,05 г
(на кончике шпателя). При этом раствор окрашивается в винно-красный цвет. Раствор в колбе медленно титрируют раствором ЭДТА до перехода окраски из винно-красной в зелёную. Результаты титрования (V 2) заносят в табл. 8.

Таблица 8

Результаты титрования раствора, содержащего кальций и магний

№ опыта Объем исследуемого раствора, см 3 Объем ЭДТА, V ∑ , см 3 Содержание Mg 2+ в растворе, г
25,00
25,00
25,00
25,00
25,00

Реактивы

1. Раствор ЭДТА с молярной концентрацией ~ 0,05 моль/дм 3 .

2. Стандартный раствор Cu(II) с титром 2,00×10 -3 г/дм 3 .

3. Н 2 О дистиллированная.

4. Аммиачный буфер с рН~ 8 – 8,5.

5. Мурексид, индикаторная смесь.

Задачи

1. Вычислите α 4 для ЭДТА при pH=5, если константы ионизации ЭДТА следующие: K 1 =1,0·10 -2 , K 2 =2,1·10 -3 , K 3 =6,9·10 -7 , K 4 =5,5·10 -11 .

2. Постройте кривую титрования 25,00 мл 0,020 М раствора никеля 0,010 М раствором ЭДТА при pH=10, если константа устойчивости
К NiY = 10 18,62 . Вычислите p после добавления 0,00; 10,00; 25,00; 40,00; 50,00 и 55,00 мл титранта.

3. На титрование 50,00 мл раствора, содержащего ионы кальция
и магния, потребовалось 13,70 мл 0,12 М раствора ЭДТА при pH=12 и 29,60 мл при pH=10. Выразите концентрации кальция и магния в растворе в мг/мл.

4. При анализе в 1 л воды найдено 0,2173 г оксида кальция и 0,0927 г оксида магния. Вычислите, какой объём ЭДТА концентрации 0,0500 моль/л был затрачен на титрование.

5. На титрование 25,00 мл стандартного раствора, содержащего 0,3840 г сульфата магния, израсходовано 21,40 мл раствора трилона Б. Вычислите титр этого раствора по карбонату кальция и его молярную концентрацию.

6. На основании констант образования (устойчивости) комплексонатов металлов, приведенных ниже, оцените возможность комплексонометрического титрования ионов металлов при pH = 2; 5; 10; 12.

7. При титровании 0,01 М раствора Ca 2+ 0,01 М раствором ЭДТА при pH=10 константа устойчивости K CaY = 10 10,6 . Вычислите, какой должна быть условная константа устойчивости комплекса металла с индикатором при pH=10, если в конечной точке титрования =.

8. Константа кислотной ионизации индикатора, используемого при комплексонометрическом титровании, равна 4,8·10 -6 . Вычислите содержание кислотной и щелочной форм индикатора при pH = 4,9, если его общая концентрация в растворе составляет 8,0·10 -5 моль/л. Определите возможность использования данного индикатора при титровании раствора
с pH=4,9, если цвет его кислотной формы совпадает с цветом комплекса.

9. Для определения содержания алюминия в образце навеску образца 550 мг растворили и добавили 50,00 мл 0,05100 М раствора комплексона III. Избыток последнего оттитровали 14,40 мл 0,04800 М раствором цинка (II). Рассчитайте массовую долю алюминия в образце.

10. При разрушении комплекса, содержащего висмут и йодид-ионы, последние титруют раствором Ag(I), а висмут – комплексоном III.
Для титрования раствора, содержащего 550 мг образца, требуется 14,50 мл 0,05000 М раствора комплексона III, а на титрование йодид-иона, содержащегося в 440 мг образца, затрачивается 23,25 мл 0,1000 М раствора Ag(I). Рассчитайте координационное число висмута в комплексе, если йодид-ионы являются лигандом.

11. Образец массой 0,3280 г, содержащий Pb, Zn, Cu, растворили
и перевели в мерную колбу на 500,00 см 3 . Определение вели в три этапа:
а) на титрование первой порции раствора объемом 10,00 см 3 , содержащего Pb, Zn, Cu, затрачено 37,50 см 3 0,0025 М раствора ЭДТА; б) во второй порции объемом 25,00 см 3 замаскировали Cu, а на титрование Pb и Zn израсходовано 27,60 см 3 ЭДТА; в) в третьей порции объемом 100,00 см 3 замаскировали Zn
и Cu, на титрование Pb затрачено 10,80 см 3 ЭДТА. Определите массовую долю Pb, Zn, Cu в образце.

Кривые титрования

В редоксметрии кривые титрования строят в координатах Е = f (C R ),
они иллюстрируют графическое изменение потенциала системы в процессе титрования. До точки эквивалентности потенциал системы рассчитывается по отношению концентраций окисленной и восстановленной форм определяемого вещества (потому что до точки эквивалентности одна из форм титранта практически отсутствует), после точки эквивалентности – по отношению концентраций окисленной и восстановленной форм титранта (потому что после точки эквивалентности определяемое вещество оттитровано практически полностью).

Потенциал в точке эквивалентности определяется по формуле

, (26)

где – число электронов, участвующих в полуреакциях;

– стандартные электродные потенциалы полуреакций.

На рис. 10 представлена кривая титрования раствора щавелевой кислоты H 2 C 2 O 4 раствором перманганата калия KMnO 4 в кислой среде
( = 1 моль/дм 3).

Рис. 10. Кривая титрования 100,00 см 3 раствора щавелевой

кислоты H 2 C 2 O 4 с С 1/ z = 0,1000 моль/дм 3 раствором перманганата

калия KMnO 4 с С 1/ z = 0,1000 моль/дм 3 при =1 моль/дм 3

Потенциал полуреакции MnO 4 - + 5e + 8H + → Mn 2+ + 4H 2 O зависит от рН среды, так как в полуреакции участвуют ионы водорода.

Перманганатометрия

Титрантом является раствор перманганата калия KMnO 4 , являющийся сильным окислителем. Основное уравнение:

MnO 4 - +8H + + 5e = Mn 2+ + 4H 2 O, =+1,51 В.

М 1/ z (KMnO 4)= г/моль.

В слабокислых, нейтральных и слабощелочных средах вследствие меньшего окислительно-восстановительного потенциала перманганат-ион восстанавливается до Mn +4 .

MnO 4 - +2H 2 O + 3e = MnО 2 ¯ + 4OH - , = +0,60 В.

М 1/ z (KMnO 4)= 158,03/3= 52,68 г/моль.

В щелочной среде раствор перманганата калия восстанавливается
до Mn +6 .

MnO 4 - + 1e = MnO 4 2- , = +0,558 В.

М 1/ z (KMnO 4)= 158,03 г/моль.

Для исключения побочных реакций титрование перманганатом калия проводят в кислой среде, которую создают серной кислотой. Соляную кислоту для создания среды применять не рекомендуется, так как перманганат калия способен окислять хлорид-ион.

2Cl - – 2e = Cl 2 , = +1,359 В.

Наиболее часто перманганат калия применяют в виде раствора
с молярной концентрацией эквивалента ~ 0,05 – 0,1 моль/дм 3 . Он не является первичным стандартом в силу того, что водные растворы перманганата калия способны окислять воду и органические примеси в ней:

4MnO 4- + 2H 2 O = 4MnО 2 ¯+ 3O 2 ­+ 4OH -

Разложение растворов перманганата калия ускоряется в присутствии диоксида марганца. Поскольку диоксид марганца является продуктом разложения перманганата, этот осадок оказывает автокаталитический эффект на процесс разложения.

Твердый перманганат калия, применяемый для приготовления растворов, загрязнен диоксидом марганца, поэтому приготовить раствор из точной навески нельзя. Для того чтобы получить достаточно устойчивый раствор перманганата калия, его после растворения навески KMnO 4 в воде оставляют в темной бутыли на несколько дней (или кипятят), а затем отделяют MnO 2 ¯ фильтрованием через стеклянный фильтр (применять бумажный фильтр нельзя, так как он реагирует с перманганатом калия, образуя диоксид марганца).

Окраска раствора перманганата калия настолько интенсивна,
что индикатор в этом методе не требуется. Для того чтобы придать заметную розовую окраску 100 см 3 воды, достаточно 0,02 – 0,05 см 3 раствора KMnO 4
с молярной концентрацией эквивалента 0,1 моль/дм 3 (0,02 М). Окраска перманганата калия в конечной точке титрования неустойчивая и постепенно обесцвечивается в результате взаимодействия избытка перманганата
с ионами марганца (II), присутствующими в конечной точке в относительно большом количестве:

2MnO 4 - + 3Mn 2+ + 2H 2 O « 5MnО 2 ¯ + 4H +

Стандартизацию рабочего раствора KMnO 4 проводят по оксалату натрия или щавелевой кислоте (свежеперекристаллизованной и высушенной при 105°С).

Используют растворы первичных стандартов с молярной концентрацией эквивалента С (½ Na 2 C 2 O 4) = 0,1000 или 0,05000 моль/л.

C 2 O 4 2- – 2e ® 2CO 2 , = -0,49 В

Титриметрический, или объемный, анализ - метод количественного анализа, основанный на измерении объема (или массы) реагента Т, затраченного на реакцию с определяемым веществом Х. Другими словами, титриметрический анализ - анализ, основанный на титровании.

Цель лабораторных занятий по титриметрическим методам анализа - выработка практических навыков по технике выполнения титриметрического анализа и овладение методами статистической обработки результатов анализа на примере конкретных количественных определений, а также закрепление теоретических знаний путем решения типовых расчетных задач по каждой теме.

Знание теории и практики методов титриметрического анализа необходимо для последующего изучения инструментальных методов анализа, других химических и специальных фармацевтических дисциплин (фармацевтической, токсикологической химии, фармакогнозии, фармацевтической технологии). Изучаемые методы титриметрического анализа являются фармакопейными и широко применяются в практической деятельности провизора для контроля качества лекарственных препаратов.

Условные обозначения

А, Х, Т - любое вещество, определяемое вещество и титрант соответственно;

m(A), m(Х), т(Т) - масса любого вещества, определяемого вещества и титранта соответственно, г;

М(А), М(Х), М(Т) - молярная масса любого вещества, определяемого вещества и титранта соответственно, г/моль;

n(А), n(Х), n(Т) - количество любого вещества, определяемого вещества и титранта соответственно, моль;

Количество вещества эквивалента любого вещества, определяемого вещества и титранта соответственно, моль;

- объем раствора любого вещества, определяемого вещества и титранта соответственно, л;

- объем аликвотной доли определяемого вещества, равный вместимости пипетки, л;

- объем анализируемого раствора определяемого вещества, равный вместимости колбы, л.

1. Основные понятия титриметрического

анализа

1.1. Титрование - процесс определения вещества Х постепенным прибавлением небольших количеств вещества Т, при котором какимнибудь способом обеспечивают обнаружение точки (момента), когда все вещество Х прореагировало. Титрование позволяет найти количество вещества Х по известному количеству вещества Т, прибавленного до этой точки (момента), с учетом того, что соотношение, в котором реагируют Х и Т, известно из стехиометрии или как-то иначе.

1.2. Титрант - раствор, содержащий активный реагент Т, с помощью которого проводят титрование. Обычно титрование проводят, прибавляя титрант из калиброванной бюретки в колбу для титрования с анализируемым раствором. В эту колбу перед титрованием вносят аликвотную долю анализируемого раствора.

1.3. Аликвотная доля (аликвота) - точно известная часть анализируемого раствора, взятая для анализа. Часто она отбирается калиброванной пипеткой, и ее объем обычно обозначается символом V ss .

1.4. Точка эквивалентности (ТЭ) - такая точка (момент) титрования, в которой количество прибавленного титранта Т эквивалентно количеству титруемого вещества Х. Синонимы ТЭ: стехиометрическая точка, теоретическая конечная точка.

1.5. Конечная точка титрования (КТТ ) - точка (момент) титрования, в которой некоторое свойство раствора (например, его окраска) показывает заметное (резкое) изменение. КТТ соответствует более или менее ТЭ, но чаще всего не совпадает с ней.

1.6. Индикатор - вещество, которое проявляет видимое изменение в ТЭ или вблизи нее. В идеальном случае индикатор присутствует в достаточно малой концентрации, чтобы в интервале его перехода не затра-

чивалось существенное количество титранта Т. Резкое видимое изменение индикатора (например, его окраски) соответствует КТТ.

1.7. Интервал перехода индикатора - область концентрации ионов водорода, металла или других ионов, в пределах которой глаз способен обнаружить изменение в оттенке, интенсивности окраски, флуоресценции или другого свойства визуального индикатора, вызванное изменением соотношения двух соответствующих форм индикатора. Эту область обычно выражают в виде отрицательного логарифма концентрации, например:Для окислительно-восстановительного индикатора интервал перехода представляет собой соответствующую область окислительно-восстановительного потенциала.

1.8. Степень оттитрованности- отношение объема V (Т) добавленного титранта к объему V (ТЭ) титранта, соответствующему ТЭ. Другими словами, степень оттитрованности раствора - отношение количества оттитрованного вещества к его исходному количеству в анализируемом растворе:

1.9. Уровень титрования - порядокконцентрации используемого раствора титранта, например, 10 -1 , 10 -2 , 10 -3 и т.д.

1.10. Кривая титрования - графическое изображение зависимости изменения концентрации с (Х) определяемого вещества Х или некоторого связанного с ним свойства системы (раствора) от объема V (Т) прибавленного титранта Т. Величина с (Х) в ходе титрования изменяется на несколько порядков, поэтому кривая титрования часто строится в координатах:По оси абсцисс откладывают объем прибавленного титранта V (Т) или степень оттитрованности / . Если по оси ординат откладывать равновесную концентрацию с (Х) или интенсивность пропорционального ей свойства, то получают линейную кривую титрования. Если по оси ординат откладыватьили логарифм интенсивности свойства, пропорционального с (Х), то получают логарифмическую (или монологарифмическую) кривую титрования. Для более четкого выявления особенностей процесса титрования и в прикладных целях иногда строят дифференциальные кривые титрования, откладывая по оси абсцисс объем прибавленного титранта V (Т), а по оси ординат - первую производную от логарифма концентрации (или интенсивности пропорционального ей свойства) по объему прибавляемого титранта:Такие кривые титрования обычно используют в физико-химических методах анализа, например, при потенциометрическом титровании.

1.11. Стандартный раствор - раствор, имеющий известную концентрацию активного вещества.

1.12. Стандартизация - процесс нахождения концентрации активного реагента в растворе (чаще всего путем титрования его стандартным раствором соответствующего вещества).

1.13. Скачок титрования - интервал резкого изменения какоголибо физического или физико-химического свойства раствора вблизи точки эквивалентности, обычно наблюдается тогда, когда добавлено 99,9-100,1% титранта по сравнению с его стехиометрическим количеством.

1.14. Холостое титрование - титрование раствора, идентичного анализируемому раствору по объему, кислотности, количеству индикатора и т.д., но не содержащего определяемого вещества.

2. Основные операции титриметрического анализа

2.1. Очистка, мытье, хранение мерной посуды.

2.2. Проверка вместимости мерной посуды.

2.3. Взятие навески с точно известной массой по разности результатов двух взвешиваний (обычно - на аналитических весах).

2.4. Количественное перенесение навески вещества в мерную колбу и растворение вещества.

2.5. Заполнение мерной посуды (колб, бюреток, пипеток) раствором.

2.6. Опорожнение пипеток, бюреток.

2.7. Отбор аликвотной доли анализируемого раствора.

2.8. Титрование и расчеты по результатам титрования.

3. Калибровка мерной посуды

При титриметрическом анализе точные объемы раствора отмеривают с помощью измерительной посуды, в качестве которой используют мерные колбы вместимостью 1000, 500, 250, 100, 50 и 25 мл, пипетки и градуированные пипетки вместимостью 10, 5, 3, 2 и 1 мл. Вместимость колбы и пипетки при 20 °C выгравирована на шейке колбы или на боковой поверхности пипетки (номинальный объем). При массовом изготовлении мерной посуды действительная (истинная) вместимость мерных колб, бюреток, пипеток может отличаться от номинальных значений, указанных на посуде. Для достижения необходимой точности получаемых результатов титриметрического анализа

Калибровка мерной посуды основана на определении точной массы вливаемой или выливаемой дистиллированной воды, которая определяется по результатам взвешивания посуды до и после вливания или выливания воды. Объем воды в калибруемой посуде (ее вместимость) и масса воды связаны соотношением:


где- плотность воды при температуре опыта, г/мл.

Плотность воды зависит от температуры, поэтому при проведении расчетов следует использовать данные табл. 2-1.

Таблица 2-1. Значения плотности воды при соответствующей температуре


Мерные колбы калибруются на вливание, а бюретки и пипетки - на выливание, так как небольшие количества жидкости при выливании всегда остаются на стенках посуды.

3.1. Проверка вместимости мерных колб

Колбу тщательно моют, высушивают и взвешивают на аналитических весах с точностью до ±0,002 г. Затем заполняют ее водой (здесь и далее - дистиллированной) по нижнему мениску, удаляют фильтровальной бумагой капли воды в верхней части горлышка колбы и снова взвешивают. Каждое взвешивание пустой колбы и колбы с водой проводят не менее двух раз, при этом расхождение между двумя взвешиваниями не должно превышать ±0,005 г. Разность между массой колбы с водой и массой пустой колбы равна массе воды, вмещаемой колбой при данной температуре. Истинную вместимость колбы рассчитывают делением среднего значения массы воды на ее плотность при температуре опыта (см. табл. 2-1).

Например, пусть при калибровке мерной колбы с номинальным объемом 100 мл среднее значение массы воды при 18 °C равно 99,0350 г. Тогда истинная вместимость мерной колбы равна:

3.2. Проверка вместимости бюреток

Бюретка представляет собой стеклянный цилиндр, внутренний диаметр которого может несколько изменяться по длине бюретки. Равным делениям на бюретке в различных ее частях соответствуют неравные объемы раствора. Именно поэтому при калибровке бюретки рассчитывают истинные объемы для каждого выбранного участка бюретки.

Чистую и высушенную бюретку заполняют водой до нулевой отметки по нижнему мениску и удаляют с помощью фильтровальной бумаги капли воды с внутренней поверхности верхней части бюретки. Затем под бюретку подставляют бюкс, предварительно взвешенный с крышкой на аналитических весах. В бюкс медленно сливают из бюретки определенный объем воды (например, 5 мл). После этого бюкс закрывают крышкой и снова взвешивают. Разность массы бюкса с водой и пустого бюкса равна массе воды, вмещаемой в бюретке между делениями 0 и 5 мл при температуре опыта. Затем бюретку снова заполняют водой до нулевой отметки по нижнему мениску, медленно сливают 10 мл воды в пустой бюкс и аналогичным методом определяют массу воды, вмещаемую в бюретке между делениями 0 и 10 мл. При калибровке бюретки, например, на 25 мл такую операцию проводят 5 раз и рассчитывают массу воды, соответствующую указанным на бюретке номинальным объемам 5, 10, 15, 20 и 25 мл. Каждое взвешивание пустого бюкса и бюкса с водой повторяют не менее двух раз, при этом расхождение между двумя взвешиваниями не должно превышать ±0,005 г.

Затем по табл. 2-1 определяют плотность воды при температуре опыта и рассчитывают истинную вместимость бюретки для каждого указанного на ней значения номинального объема.

На основе полученных данных рассчитывают величину поправки равную разности между рассчитанным значением истинной вместимости и соответствующим значением номинального объема бюретки:

и затем вычерчивают кривую ошибок вместимости бюретки в координатах(рис. 2-1).

Например, пусть при калибровке бюретки вместимостью 25 мл при температуре 20 °C получены следующие экспериментальные данные, которые вместе с результатами соответствующих расчетов представлены в табл. 2-2.

На основе полученных табличных данных вычерчивают кривую поправок вместимости для данной бюретки, с использованием которой можно уточнить результаты отсчета по бюретке.

Таблица 2-2. Результаты калибровки бюретки вместимостью 25 мл



Рис. 2-1. Кривая поправок вместимости бюретки

Например, пусть на титрование аликвотной доли определяемого вещества по результатам отсчета по бюретке израсходовано 7,50 мл титранта. В соответствии с графиком (см. рис. 2-1) величина поправки, соответствующая этому номинальному объему, равна 0,025 мл, истинный объем израсходованного титранта равен: 7,50 - 0,025 = 7,475 мл.

3.3. Проверка вместимости пипеток

Чистую и взвешенную на аналитических весах пипетку заполняют водой до нулевой отметки по нижнему мениску и затем воду медленно

сливают по стенке в предварительно взвешенный бюкс. Бюкс закрывают крышкой и взвешивают вместе с водой. Каждое взвешивание пустого бюкса и бюкса с водой повторяют не менее двух раз, при этом расхождение между двумя взвешиваниями не должно превышать ±0,005 г. Разность массы бюкса с водой и пустого бюкса равна массе воды, вмещаемой пипеткой. Истинную вместимость пипетки рассчитывают делением средней массы воды на плотность воды при температуре опыта (см. табл. 2-1).

4. Типовые расчеты в титриметрическом анализе

4.1. Способы выражения концентраций, применяемые для расчетов в титриметрическом анализе

4.1.1. Молярная концентрация вещества с (А), моль/л - количество вещества А в моль, содержащееся в 1 л раствора:


(2.1)

где- количество вещества А в моль, растворенное в V (А) л

раствора.

4.1.2. Молярная концентрация эквивалента вещества , моль/л - количество вещества эквивалента А в моль, содержащееся в 1 л раствора (прежнее название - «нормальность» раствора):


(2.2)

где
- количество вещества эквивалента А в моль,

растворенное в V (А) л раствора; - молярная масса эквивалента ве-

щества А, г/моль;- фактор эквивалентности вещества.

4.1.3. Титр вещества T (А), г/мл - масса растворенного вещества А в граммах, содержащаяся в 1 мл раствора:

4.1.4. Титриметрический фактор пересчетаI, г/мл - масса определяемого вещества в граммах, взаимодействующая с 1 мл титранта:

(2.4)

4.1.5. Поправочный коэффициент F - величина, показывающая, во сколько раз практические концентрации титранта отличаются от соответствующих теоретических значений, заданных в методике:


(2.5)

4.2. Вычисление молярной массы эквивалента веществ в реакциях, применяемых в титриметрическом анализе

Эквивалентом называется реальная или условная частица, которая может присоединять или отдавать один ион водорода Н+ (или быть другим образом эквивалентной ему в кислотно-основных реакциях) либо присоединять или отдавать один электрон в окислительновосстановительных реакциях.

Фактор эквивалентности- число, обозначающее, какую

долю эквивалент составляет от реальной частицы вещества А. Фактор эквивалентности рассчитывается на основании стехиометрии данной реакции:

где Z - число протонов, отдаваемых или присоединяемых одной реагирующей частицей (молекулой или ионом) в кислотно-основной реакции, или число электронов, отдаваемых или принимаемых одной реагирующей частицей (молекулой или ионом) в полуреакции окисления или восстановления.

Молярная масса эквивалента вещества - масса одного моль эквивалента вещества, равная произведению фактора эквивалентности на молярную массу вещества, г/моль. Она может быть рассчитана по формуле:


(2.6)

4.3. Приготовление раствора методом разбавления более концентрированного раствора с известной концентрацией

При проведении титриметрического анализа в ряде случаев требуется приготовить раствор вещества А объемомс примерно известной концентрацией путем разбавления более концентрированного раствора.

При разбавлении раствора водой количество вещества А или количество вещества эквивалента А не меняется, поэтому в соответствии с выражениями (2.1) и (2.2) можно записать:

(2.7)
(2.8)

где индексы 1 и 2 относятся к растворам до и после разбавления соответственно.

Из полученных соотношений рассчитывают объем более концентрированного раствора, который необходимо отмерить для приготовления заданного раствора.

4.4. Приготовление заданного объема раствора по навеске с точно известной массой

4.4.1. Расчет массы навески

Теоретическая масса навески стандартного вещества А, необходимая для приготовления заданного объема раствора с известной концентрацией, рассчитывается из выражений (2.1) и (2.2). Она равна:

(2.9)

если используется молярная концентрация вещества в растворе, и:

(2.10)

если используется молярная концентрация эквивалента вещества в растворе.

4.4.2. Расчет точной концентрации приготовленного раствора

Концентрацию раствора вещества А, приготовленного по точной навеске массой m (А), рассчитывают из соотношений (2.1-2.3), где т(А) - практическая масса вещества А, взятая по разности двух взвешиваний на аналитических весах.

4.5. Расчет концентрации титранта при его стандартизации

Известный объем стандартного раствора объемомс концентрацией титруют раствором титранта объемом V (Т) (или наоборот). В этом случае для реакции, протекающей в растворе в процессе титрования, закон эквивалентов имеет вид:

и

Отсюда получают выражение для расчета молярной концентрации эквивалента титранта по результатам титрования:


(2.12)

4.6. Расчет массы определяемого вещества в анализируемом растворе 4.6.1. Прямое титрование

Определяемое вещество в анализируемом растворе титруется непосредственно титрантом.

4.6.1.1. Расчет с использованием молярной концентрации эквивалента титранта

Аликвотную долю раствора определяемого веществатитруют

раствором титранта объемом V(T). В этом случае для реакции, протекающей в растворе в процессе титрования:

закон эквивалентов имеет вид: и

(2.13)

Отсюда молярная концентрация эквивалента определяемого вещества, рассчитанная по результатам титрования, равна:


(2.14)

Полученное выражение подставляют в уравнение (2.2) и получают формулу для расчета массы определяемого вещества в колбе объемом по результатам прямого титрования:


(2.15)

Если при титровании часть титранта расходуется на реакцию с индикатором, проводят «холостой опыт» и определяют объем титранта V" (Т),

израсходованный на титрование индикатора. При расчетах этот объем вычитают из объема титранта, который пошел на титрование раствора определяемого вещества. Такая поправка вносится при проведении «холостого опыта» во все расчетные формулы, применяемые в титриметрическом анализе. Например, формула (2.15) для расчета массы определяемого вещества с учетом «холостого опыта» будет иметь вид:

(2.16)

4.6.1.2. Расчет с использованием титриметрического фактора пересчета

Имеем анализируемый раствор объемомНа титрование алик-

вотной долираствора определяемого вещества израсходован объем титранта V (Т) с теоретическим титриметрическим фактором пересчета и поправочным коэффициентом F. Тогда масса определяемого вещества в аликвотной доле равна:

(2.17)

а во всем анализируемом объеме

(2.18)

4.6.2. Заместительное титрование

добавляют заведомый избыток реагента А и выделяется заместитель В в количестве, эквивалентном определяемому веществу:

Заместитель В титруется подходящим титрантом:

Закон эквивалентов для заместительного титрования:


с использованием соотношения (2.8) можно записать в виде:

Отсюда получают формулу для расчета молярной концентрации эквивалента определяемого вещества в растворе по результатам заместительного титрования:


которая имеет такой же вид, как и при прямом титровании (2.14). Именно поэтому все расчеты массы определяемого вещества в анализируемой задаче при заместительном титровании производят по формулам (2.15- 2.18) для прямого титрования. 4.6.3. Обратное титрование

К аликвотной доле определяемого веществадобавляют известный избыток первого титранта:

Затем избыток непрореагировавшего первого титранта оттитровывают вторым титрантомпри этом расходуется объем:

Закон эквивалентов в данном случае можно записать в виде:


Отсюда рассчитывают молярную концентрацию эквивалента вещества Х в растворе:


(2.19)

Подставляют полученное выражение в уравнение (2.2) и получают формулу для расчета массы определяемого вещества в анализируемом растворе, равном объему колбы, по результатам обратного титрования:

5. Выполнение и обеспечение практических работ по титриметрическому анализу

5.1. Общие положения

При изучении раздела «Титриметрический анализ» предусмотрено проведение работ по следующим темам.

Тема I. Методы кислотно-основного титрования.

Тема II. Методы окислительно-восстановительного титрования.

Тема III. Методы осадительного титрования.

Тема IV. Методы комплексонометрического титрования.

Занятие 1. Приготовление раствора хлороводородной кислоты и его стандартизация.

Занятие 2. Определение массы щелочи в растворе. Определение массы карбонатов в растворе. Определение массы щелочи и карбоната в растворе при совместном присутствии.

Занятие 3. Определение массы аммиака в растворах аммониевых солей.

а) Тест-контроль 1.

б) Определение массы аммиака в растворах аммониевых солей. Занятие 4. Перманганатометрическое титрование.

а) Письменная контрольная работа 1.

б) Определение массы водорода пероксида в растворе.

в) Определение массы железа(II) в растворе соли. Определение массовой доли железа(II) в образце соли.

Занятие 5. Йодометрическое титрование.

а) Определение массы водорода пероксида в растворе.

б) Определение массы меди(II) в растворе. Занятие 6. Йодиметрическое титрование.

Занятие 7. Броматометрическое титрование. Определение массы мышьяка(III) в растворе.

Занятие 8. Бромометрическое титрование. Определение массовой доли натрия салицилата в препарате.

Занятие 9. Нитритометрическое титрование.

а) Тест-контроль 2.

б) Определение массовой доли новокаина в препарате. Занятие 10. Аргентометрическое титрованиеи гексацианоферратоме-

трическое титрование.

а) Письменная контрольная работа 2.

б) Определение массы калия бромида и калия йодида в растворе методами аргентометрического титрования.

в) Определение массы цинка в растворе методом гексацианоферратометрического титрования.

Занятие 11. Комплексонометрическое определение массы цинка и свинца в растворе.

а) Тест-контроль 3.

б) Определение массы цинка и свинца в растворе.

Занятие 12. Комплексонометрическое определение железа(III) и кальция в растворе.

а) Письменная контрольная работа 3.

б) Определение массы железа(III) и кальция в растворе.

В зависимости от конкретной ситуации допускается проведение некоторых работ в течение не одного, а двух занятий. Возможно также смещение сроков проведения тест-контролей и письменных контрольных работ.

В конце каждой темы приводятся примеры тестовых пунктов для промежуточного контроля знаний студентов, содержание итоговой письменной контрольной работы, пример билета письменной контрольной работы.

В конце каждого занятия студент оформляет протокол, который включает дату и название выполненной работы, сущность методики, порядок выполнения работы, полученные экспериментальные данные, расчеты, таблицы, выводы. Все расчеты результатов анализа (концентрация раствора, масса определяемого вещества) студенты выполняют с точностью до четвертой значащей цифры, за исключением случаев, особо оговоренных по тексту.

Промежуточный контроль практических навыков и теоретических знаний осуществляется с помощью тестового контроля и письменных контрольных работ.

5.2. Материальное обеспечение занятий по титриметрическому анализу

Лабораторная посуда: бюретки вместимостью 5 мл, мерные пипетки вместимостью 2 и 5 мл, мерные колбы вместимостью 25, 50, 100 и 250 мл, конические колбы вместимостью 10-25 мл, стеклянные бюксы, стеклянные воронки диаметром 20-30 мм, склянки из обычного или темного стекла вместимостью 100, 200 и 500 мл, мерные цилиндры вместимостью 10, 100 мл.

Реактивы: в работе применяются реактивы квалификации «х.ч.» и «ч.д.а.», индикаторная бумага.

Приборы: весы аналитические с разновесами, весы технические с разновесами, сушильный шкаф, лабораторный термометр со шкалой 20-100 °C, штативы с лапками для закрепления бюреток и кольцами для асбестовых сеток, газовые горелки, водяные бани.

Вспомогательные материалы и принадлежности: моющие средства (сода, моющие порошки, хромовая смесь), ерши для мытья посуды, резиновые груши, асбестовые сетки, канцелярский клей, карандаши по стеклу, фильтровальная бумага.

Список литературы

1.Лекции для студентов по разделу «Титриметрический анализ».

2.Харитонов Ю.Я. Аналитическая химия (аналитика): В 2 т.- изд. 5-е - М.: Высшая школа, 2010 (далее именуется «Учебник»).

3.Лурье Ю.Ю. Справочник по аналитической химии.- М.: Химия, 1989 (далее именуется «Справочник»).

4.Джабаров Д.Н. Сборник упражнений и задач по аналитической химии.- М.: Русский врач, 2007.

Титриметрический анализ – метод определения количества вещества путем точного измерения объема растворов веществ, вступающих между собой в реакцию.

Титр – количество г. вещества содержащегося в 1 мл. раствора или эквивалентное определяемому веществу. Например, если титр H 2 SO 4 равен 0,0049 г/мл, это значит, что каждый мл раствора содержит 0,0049 г. серной кислоты.

Раствор, титр которого известен, называется титрованным. Титрование – процесс добавления к исследуемому раствору или его аликвотной части эквивалентного количества титрованного раствора. При этом используются стандартные растворы – фиксаналы – растворы с точной концентрацией вещества (Na 2 CO 3 , HCl).

Реакция титрования должна отвечать следующим требованиям:

    высокая скорость реакции;

    реакция должна протекать до конца;

    реакция должна быть высоко стехиометричной;

    иметь удобный метод фиксирования конца реакции.

HCl + NaOH → NaCl + H 2 O

Главная задача титриметрического анализа – не только использовать раствор точно известной концентрации (фиксанал), но и правильно определить точку эквивалентности.

Существует несколько способов зафиксировать точку эквивалентности:

      По собственной окраске ионов определяемого элемента, например марганца в виде аниона MnO 4 -

      По веществу-свидетелю

Пример: Ag + + Cl - " AgCl $

Ag + + CrO 4 " Ag 2 CrO 4 $ (ярко оранжевая окраска)

В колбу, где требуется определить ион хлора, добавляют небольшое количество соли K 2 CrO 4 (свидетель). Затем из бюретки постепенно добавляют исследуемое вещество, при этом первыми в реакцию вступают ионы хлора и образуется белый осадок (AgCl), т. е. ПР AgCl << ПР Ag2Cr O4.

Таким образом, лишняя капля нитрата серебра даст ярко оранжевую окраску, т. к. весь хлор уже прореагировал.

III . С помощью индикаторов : например, при реакции нейтрализации используют кислотно-щелочные индикаторы: лакмус, фенолфталеин, метил оранж – органические соединения изменяющие окраску при переходе от кислой к щелочной среде.

Индикаторы – органические красители, которые меняют свою окраску при изменении кислотности среды.

Схематически (опуская промежуточные формы) равновесие индикатора можно представить как кислотно-основную реакцию

HIn +H 2 O In - + H 3 O +

H 2 O
H + + OH -

H + + H 2 O
H 3 O +

На область перехода окраски индикатора (положение и интервал) влияют все факторы, от которых зависит константа равновесия (ионная сила, температура, посторонние вещества, растворитель), а также индикатора.

Классификация методов титриметрического анализа.

    кислотно-основное титрование (нейтрализация): этим методом определяют количество кислоты или щёлочи в анализируемом растворе;

    осаждение и комплексообразование (аргентометрия)

Ag + + Cl - " AgCl $

    окислительно-восстановительное титрование (редоксиметрия):

а) перманганатометрия (KMnO 4);

б) йодометрия (Y 2);

в) броматометрия (KBrO 3);

г) дихроматометрия (K 2 Cr 2 O 7);

д) цериметрия (Ce(SO 4) 2);

е) ванадометрия (NH 4 VO 3);

ж) титанометрия (TiCl 3) и т.д.


Самое обсуждаемое
Научно-познавательная детская книга Научно-познавательная детская книга
Интересные факты об открытии химических элементов Интересные факты о предмете химия Интересные факты об открытии химических элементов Интересные факты о предмете химия
Волшебная флейта Амадей моцарт волшебная флейта Волшебная флейта Амадей моцарт волшебная флейта


top