Момент силы формулировка. Момент силы: правило и применение. Правило момента сил

Момент силы формулировка. Момент силы: правило и применение. Правило момента сил

Момент силы (синонимы: крутящий момент, вращательный момент, вертящий момент, вращающий момент ) - векторная физическая величина , равная векторному произведению радиус-вектора , проведённого от оси вращения к точке приложения силы, на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело .

Понятия «вращающий» и «крутящий» моменты в общем случае не тождественны, так как в технике понятие «вращающий» момент рассматривается как внешнее усилие, прикладываемое к объекту, а «крутящий» - внутреннее усилие, возникающее в объекте под действием приложенных нагрузок (этим понятием оперируют в сопротивлении материалов).

Энциклопедичный YouTube

    1 / 5

    ✪ 7 кл - 39. Момент силы. Правило моментов

    ✪ Момент силы тяжести.Гантеля и рука

    ✪ Сила и масса

    ✪ Момент силы. Рычаги в природе, технике, быту | Физика 7 класс #44 | Инфоурок

    ✪ Зависимость углового ускорения от момента сил 1

    Субтитры

Общие сведения

Специальные случаи

Формула момента рычага

Очень интересен особый случай, представляемый как определение момента силы в поле:

| M → | = | M → 1 | | F → | {\displaystyle \left|{\vec {M}}\right|=\left|{\vec {M}}_{1}\right|\left|{\vec {F}}\right|} , где: | M → 1 | {\displaystyle \left|{\vec {M}}_{1}\right|} - момент рычага, | F → | {\displaystyle \left|{\vec {F}}\right|} - величина действующей силы.

Проблема такого представления в том, что оно не дает направления момента силы, а только его величину. Если сила перпендикулярна вектору r → {\displaystyle {\vec {r}}} , момент рычага будет равен расстоянию до центра и момент силы будет максимален:

| T → | = | r → | | F → | {\displaystyle \left|{\vec {T}}\right|=\left|{\vec {r}}\right|\left|{\vec {F}}\right|}

Сила под углом

Если сила F → {\displaystyle {\vec {F}}} направлена под углом θ {\displaystyle \theta } к рычагу r, то M = r F sin ⁡ θ {\displaystyle M=rF\sin \theta } .

Статическое равновесие

Для того чтобы объект находился в равновесии, должна равняться нулю не только сумма всех сил, но и сумма всех моментов силы вокруг любой точки. Для двумерного случая с горизонтальными и вертикальными силами: сумма сил в двух измерениях ΣH=0, ΣV=0 и момент силы в третьем измерении ΣM=0.

Момент силы как функция от времени

M → = d L → d t {\displaystyle {\vec {M}}={\frac {d{\vec {L}}}{dt}}} ,

где L → {\displaystyle {\vec {L}}} - момент импульса.

Возьмём твердое тело. Движение твёрдого тела можно представить как движение конкретной точки и вращения вокруг неё.

Момент импульса относительно точки O твёрдого тела может быть описан через произведение момента инерции и угловой скорости относительно центра масс и линейного движения центра масс.

L o → = I c ω → + [ M (r o → − r c →) , v c → ] {\displaystyle {\vec {L_{o}}}=I_{c}\,{\vec {\omega }}+}

Будем рассматривать вращающиеся движения в системе координат Кёнига , так как описывать движение твёрдого тела в мировой системе координат гораздо сложнее.

Продифференцируем это выражение по времени. И если I {\displaystyle I} - постоянная величина во времени, то

M → = I d ω → d t = I α → {\displaystyle {\vec {M}}=I{\frac {d{\vec {\omega }}}{dt}}=I{\vec {\alpha }}} ,

где α → {\displaystyle {\vec {\alpha }}} - угловое ускорение , измеряемое в радианах в секунду за секунду (рад/с 2). Пример: вращается однородный диск.

Если тензор инерции меняется со временем, то движение относительно центра масс описывается с помощью динамического уравнения Эйлера:

M c → = I c d ω → d t + [ w → , I c w → ] {\displaystyle {\vec {M_{c}}}=I_{c}{\frac {d{\vec {\omega }}}{dt}}+[{\vec {w}},I_{c}{\vec {w}}]} .

Момент силы (синонимы: крутящий момент, вращательный момент, вертящий момент, вращающий момент ) - векторная физическая величина , равная векторному произведению радиус-вектора , проведённого от оси вращения к точке приложения силы, на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело .

Понятия «вращающий» и «крутящий» моменты в общем случае не тождественны, так как в технике понятие «вращающий» момент рассматривается как внешнее усилие, прикладываемое к объекту, а «крутящий» - внутреннее усилие, возникающее в объекте под действием приложенных нагрузок (этим понятием оперируют в сопротивлении материалов).

Общие сведения

Специальные случаи

Формула момента рычага

Очень интересен особый случай, представляемый как определение момента силы в поле:

\left|\vec M\right| = \left|\vec{M}_1\right| \left|\vec F\right|, где: \left|\vec{M}_1\right| - момент рычага, \left|\vec F\right| - величина действующей силы.

Проблема такого представления в том, что оно не дает направления момента силы, а только его величину. Если сила перпендикулярна вектору \vec r, момент рычага будет равен расстоянию до центра и момент силы будет максимален:

\left|\vec{T}\right| = \left|\vec r\right| \left|\vec F\right|

Сила под углом

Если сила \vec F направлена под углом \theta к рычагу r, то M = r F \sin\theta.

Статическое равновесие

Для того чтобы объект находился в равновесии, должна равняться нулю не только сумма всех сил, но и сумма всех моментов силы вокруг любой точки. Для двумерного случая с горизонтальными и вертикальными силами: сумма сил в двух измерениях ΣH=0, ΣV=0 и момент силы в третьем измерении ΣM=0.

Момент силы как функция от времени

\vec M = \frac{d\vec L}{dt},

где \vec L - момент импульса.

Возьмём твердое тело. Движение твёрдого тела можно представить как движение конкретной точки и вращения вокруг неё.

Момент импульса относительно точки O твёрдого тела может быть описан через произведение момента инерции и угловой скорости относительно центра масс и линейного движения центра масс.

\vec{L_o} = I_c\,\vec\omega +

Будем рассматривать вращающиеся движения в системе координат Кёнига , так как описывать движение твёрдого тела в мировой системе координат гораздо сложнее.

Продифференцируем это выражение по времени. И если I - постоянная величина во времени, то

\vec M = I\frac{d\vec\omega}{dt} = I\vec\alpha,

Отношение между моментом силы и работой

A = \int_{\theta_1}^{\theta_2} \left|\vec M\right| \mathrm{d}\theta

В случае постоянного момента получаем:

A = \left|\vec M\right|\theta

Обычно известна угловая скорость \omega в радианах в секунду и время действия момента t.

Тогда совершённая моментом силы работа рассчитывается как:

A = \left|\vec M\right|\omega t

Момент силы относительно точки

Если имеется материальная точка O_F, к которой приложена сила \vec F, то момент силы относительно точки O равен векторному произведению радиус-вектора \vec r, соединяющего точки O и O_F, на вектор силы \vec F:

\vec{M_O} = \left[\vec r \times \vec F\right].

Момент силы относительно оси

Момент силы относительно оси равен алгебраическому моменту проекции этой силы на плоскость, перпендикулярную этой оси относительно точки пересечения оси с плоскостью, то есть M_z(F) = M_o(F") = F"h".

Единицы измерения

Момент силы измеряется в ньютон-метрах . 1 Н·м - это момент, который производит сила 1 Н на рычаг длиной 1 м, приложенная к концу рычага и направленная перпендикулярно ему.

Измерение момента

На сегодняшний день измерение момента силы осуществляется с помощью тензометрических, оптических и индуктивных датчиков нагрузки .

См. также

Напишите отзыв о статье "Момент силы"

Отрывок, характеризующий Момент силы

Но хотя уже к концу сражения люди чувствовали весь ужас своего поступка, хотя они и рады бы были перестать, какая то непонятная, таинственная сила еще продолжала руководить ими, и, запотелые, в порохе и крови, оставшиеся по одному на три, артиллеристы, хотя и спотыкаясь и задыхаясь от усталости, приносили заряды, заряжали, наводили, прикладывали фитили; и ядра так же быстро и жестоко перелетали с обеих сторон и расплюскивали человеческое тело, и продолжало совершаться то страшное дело, которое совершается не по воле людей, а по воле того, кто руководит людьми и мирами.
Тот, кто посмотрел бы на расстроенные зады русской армии, сказал бы, что французам стоит сделать еще одно маленькое усилие, и русская армия исчезнет; и тот, кто посмотрел бы на зады французов, сказал бы, что русским стоит сделать еще одно маленькое усилие, и французы погибнут. Но ни французы, ни русские не делали этого усилия, и пламя сражения медленно догорало.
Русские не делали этого усилия, потому что не они атаковали французов. В начале сражения они только стояли по дороге в Москву, загораживая ее, и точно так же они продолжали стоять при конце сражения, как они стояли при начале его. Но ежели бы даже цель русских состояла бы в том, чтобы сбить французов, они не могли сделать это последнее усилие, потому что все войска русских были разбиты, не было ни одной части войск, не пострадавшей в сражении, и русские, оставаясь на своих местах, потеряли половину своего войска.
Французам, с воспоминанием всех прежних пятнадцатилетних побед, с уверенностью в непобедимости Наполеона, с сознанием того, что они завладели частью поля сраженья, что они потеряли только одну четверть людей и что у них еще есть двадцатитысячная нетронутая гвардия, легко было сделать это усилие. Французам, атаковавшим русскую армию с целью сбить ее с позиции, должно было сделать это усилие, потому что до тех пор, пока русские, точно так же как и до сражения, загораживали дорогу в Москву, цель французов не была достигнута и все их усилия и потери пропали даром. Но французы не сделали этого усилия. Некоторые историки говорят, что Наполеону стоило дать свою нетронутую старую гвардию для того, чтобы сражение было выиграно. Говорить о том, что бы было, если бы Наполеон дал свою гвардию, все равно что говорить о том, что бы было, если б осенью сделалась весна. Этого не могло быть. Не Наполеон не дал своей гвардии, потому что он не захотел этого, но этого нельзя было сделать. Все генералы, офицеры, солдаты французской армии знали, что этого нельзя было сделать, потому что упадший дух войска не позволял этого.
Не один Наполеон испытывал то похожее на сновиденье чувство, что страшный размах руки падает бессильно, но все генералы, все участвовавшие и не участвовавшие солдаты французской армии, после всех опытов прежних сражений (где после вдесятеро меньших усилий неприятель бежал), испытывали одинаковое чувство ужаса перед тем врагом, который, потеряв половину войска, стоял так же грозно в конце, как и в начале сражения. Нравственная сила французской, атакующей армии была истощена. Не та победа, которая определяется подхваченными кусками материи на палках, называемых знаменами, и тем пространством, на котором стояли и стоят войска, – а победа нравственная, та, которая убеждает противника в нравственном превосходстве своего врага и в своем бессилии, была одержана русскими под Бородиным. Французское нашествие, как разъяренный зверь, получивший в своем разбеге смертельную рану, чувствовало свою погибель; но оно не могло остановиться, так же как и не могло не отклониться вдвое слабейшее русское войско. После данного толчка французское войско еще могло докатиться до Москвы; но там, без новых усилий со стороны русского войска, оно должно было погибнуть, истекая кровью от смертельной, нанесенной при Бородине, раны. Прямым следствием Бородинского сражения было беспричинное бегство Наполеона из Москвы, возвращение по старой Смоленской дороге, погибель пятисоттысячного нашествия и погибель наполеоновской Франции, на которую в первый раз под Бородиным была наложена рука сильнейшего духом противника.

Для человеческого ума непонятна абсолютная непрерывность движения. Человеку становятся понятны законы какого бы то ни было движения только тогда, когда он рассматривает произвольно взятые единицы этого движения. Но вместе с тем из этого то произвольного деления непрерывного движения на прерывные единицы проистекает большая часть человеческих заблуждений.
Известен так называемый софизм древних, состоящий в том, что Ахиллес никогда не догонит впереди идущую черепаху, несмотря на то, что Ахиллес идет в десять раз скорее черепахи: как только Ахиллес пройдет пространство, отделяющее его от черепахи, черепаха пройдет впереди его одну десятую этого пространства; Ахиллес пройдет эту десятую, черепаха пройдет одну сотую и т. д. до бесконечности. Задача эта представлялась древним неразрешимою. Бессмысленность решения (что Ахиллес никогда не догонит черепаху) вытекала из того только, что произвольно были допущены прерывные единицы движения, тогда как движение и Ахиллеса и черепахи совершалось непрерывно.
Принимая все более и более мелкие единицы движения, мы только приближаемся к решению вопроса, но никогда не достигаем его. Только допустив бесконечно малую величину и восходящую от нее прогрессию до одной десятой и взяв сумму этой геометрической прогрессии, мы достигаем решения вопроса. Новая отрасль математики, достигнув искусства обращаться с бесконечно малыми величинами, и в других более сложных вопросах движения дает теперь ответы на вопросы, казавшиеся неразрешимыми.
Эта новая, неизвестная древним, отрасль математики, при рассмотрении вопросов движения, допуская бесконечно малые величины, то есть такие, при которых восстановляется главное условие движения (абсолютная непрерывность), тем самым исправляет ту неизбежную ошибку, которую ум человеческий не может не делать, рассматривая вместо непрерывного движения отдельные единицы движения.
В отыскании законов исторического движения происходит совершенно то же.
Движение человечества, вытекая из бесчисленного количества людских произволов, совершается непрерывно.
Постижение законов этого движения есть цель истории. Но для того, чтобы постигнуть законы непрерывного движения суммы всех произволов людей, ум человеческий допускает произвольные, прерывные единицы. Первый прием истории состоит в том, чтобы, взяв произвольный ряд непрерывных событий, рассматривать его отдельно от других, тогда как нет и не может быть начала никакого события, а всегда одно событие непрерывно вытекает из другого. Второй прием состоит в том, чтобы рассматривать действие одного человека, царя, полководца, как сумму произволов людей, тогда как сумма произволов людских никогда не выражается в деятельности одного исторического лица.
Историческая наука в движении своем постоянно принимает все меньшие и меньшие единицы для рассмотрения и этим путем стремится приблизиться к истине. Но как ни мелки единицы, которые принимает история, мы чувствуем, что допущение единицы, отделенной от другой, допущение начала какого нибудь явления и допущение того, что произволы всех людей выражаются в действиях одного исторического лица, ложны сами в себе.
Всякий вывод истории, без малейшего усилия со стороны критики, распадается, как прах, ничего не оставляя за собой, только вследствие того, что критика избирает за предмет наблюдения большую или меньшую прерывную единицу; на что она всегда имеет право, так как взятая историческая единица всегда произвольна.
Только допустив бесконечно малую единицу для наблюдения – дифференциал истории, то есть однородные влечения людей, и достигнув искусства интегрировать (брать суммы этих бесконечно малых), мы можем надеяться на постигновение законов истории.
Первые пятнадцать лет XIX столетия в Европе представляют необыкновенное движение миллионов людей. Люди оставляют свои обычные занятия, стремятся с одной стороны Европы в другую, грабят, убивают один другого, торжествуют и отчаиваются, и весь ход жизни на несколько лет изменяется и представляет усиленное движение, которое сначала идет возрастая, потом ослабевая. Какая причина этого движения или по каким законам происходило оно? – спрашивает ум человеческий.
Историки, отвечая на этот вопрос, излагают нам деяния и речи нескольких десятков людей в одном из зданий города Парижа, называя эти деяния и речи словом революция; потом дают подробную биографию Наполеона и некоторых сочувственных и враждебных ему лиц, рассказывают о влиянии одних из этих лиц на другие и говорят: вот отчего произошло это движение, и вот законы его.
Но ум человеческий не только отказывается верить в это объяснение, но прямо говорит, что прием объяснения не верен, потому что при этом объяснении слабейшее явление принимается за причину сильнейшего. Сумма людских произволов сделала и революцию и Наполеона, и только сумма этих произволов терпела их и уничтожила.

Враща́тельное движе́ние - вид механического движения. При вращательном движении абсолютно твёрдого тела его точки описывают окружности, расположенные в параллельных плоскостях. Центры всех окружностей лежат при этом на одной прямой, перпендикулярной к плоскостям окружностей и называемой осью вращения. Ось вращения может располагаться внутри тела и за его пределами. Ось вращения в данной системе отсчёта может быть как подвижной, так и неподвижной. Например, в системе отсчёта, связанной с Землёй, ось вращения ротора генератора на электростанции неподвижна.

Кинетические характеристики:

Вращение твердого тела, как целого характеризуется углом , измеряющегося в угловых градусах или радианах, угловой скоростью (измеряется в рад/с)и угловым ускорением(единица измерения - рад/с²).

При равномерном вращении (T оборотов в секунду):

Частота вращения - число оборотов тела в единицу времени.-

Период вращения - время одного полного оборота. Период вращения T и его частота связаны соотношением.

Линейная скорость точки, находящейся на расстоянии R от оси вращения

Угловая скорость вращения тела

Момент силы (синонимы: крутящий момент, вращательный момент, вертящий момент, вращающий момент) - векторная физическая величина, равная векторному произведению радиус-вектора (проведённого от оси вращения к точке приложения силы - по определению), на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело.

Момент силы измеряется в ньютон-метрах. 1 Н·м - момент силы, который производит сила 1 Н на рычаг длиной 1 м. Сила приложена к концу рычага и направлена перпендикулярно ему.

Моме́нт и́мпульса (кинетический момент, угловой момент, орбитальный момент, момент количества движения) характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение. Момент импульса замкнутой системы сохраняется

Зако́н сохране́ния моме́нта и́мпульса (закон сохранения углового момента) - один из фундаментальных законов сохранения. Математически выражается через векторную сумму всех моментов импульса относительно выбранной оси для замкнутой системы тел и остается постоянной, пока на систему не воздействуют внешние силы. В соответствии с этим момент импульса замкнутой системы в любой системе координат не изменяется со временем.

Закон сохранения момента импульса есть проявление изотропности пространства относительно поворота.

16.Уравнение динамики вращательного движения. Момент инерции.

Основное уравнение динамики вращательного движения материальной точки - угловое ускорение точки при ее вращении вокруг неподвижной оси пропорционально вращающему моменту и обратно пропорционально моменту инерции.

М = E*J или E = M/J

Сравнивая полученное выражение со вторым законом Ньютона с поступательным законом, видим, что момент инерции J является мерой инертности тела во вращательном движении. Как и масса величина аддитивная.

Момент инерции - скалярная (в общем случае - тензорная) физическая величина, мера инертности во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости).

Единица измерения СИ: кг·м².Обозначение: I или J.

Различают несколько моментов инерции - в зависимости от многообразия, от которого отсчитывается расстояние точек.

Свойства момента инерции:

1.Момент инерции системы равен сумме момента инерции её частей.

2.Момент инерции тела является величиной, иманентно присущей этому телу.

Момент инерции твердого тела - это велина, характеризующая распределение массы в теле и являющаяся мерой инертности тела при вращательном движении.

Формула момента инерции:

Теорема Штейнера:

Момент инерции тела относительно какой-либо оси равен моменту инерции относительно параллельной оси, проходящей через центр инерции, сложенной с величиной m*(R*R), где R - расстояние между осями.

Моментом инерции механической системы относительно неподвижной оси («осевой момент инерции») называется величина Ja, равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси:

Осевой момент инерции тела Ja является мерой инертности тела во вращательном движении вокруг оси подобно тому, как масса тела является мерой его инертности в поступательном движении.

Центральный момент инерции (или момент инерции относительно точки O) - это величина

.

Почти две тысячи лет просуществовало правило рычага, открытое Архимедом еще в третьем веке до нашей эры, пока в семнадцатом веке с легкой руки французского ученого Вариньона не получило более общую форму.

Правило момента сил

Было введено понятие момента сил. Момент силы - это физическая величина, равная произведению силы на ее плечо:

где M - момент силы,
F - сила,
l - плечо силы.

Из правила равновесия рычага напрямую вытекает правило моментов сил:

F1 / F2 = l2 / l1 или, по свойству пропорции F1 * l1= F2 * l2, то есть M1 = M2

В словесном выражении правило моментов сил звучит следующим образом: рычаг находится в равновесии под действием двух сил, если момент силы, вращающей его по часовой стрелке, равен моменту силы, вращающей его против часовой стрелки. Правило моментов сил справедливо для любого тела, закрепленного вокруг неподвижной оси. На практике момент силы находят следующим образом: по направлению действия силы проводят линию действия силы. Потом из точки, в которой находится ось вращения, проводят перпендикуляр до линии действия силы. Длина этого перпендикуляра будет равняться плечу силы. Умножив значение модуля силы на ее плечо, получаем значение момента силы относительно оси вращения. То есть, мы видим, что момент силы характеризует вращающее действие силы. Действие силы зависит и от самой силы и от ее плеча.

Применение правила моментов сил в различных ситуациях

Отсюда вытекает применение правила моментов сил в различных ситуациях. Например, если мы открываем дверь, то толкать ее мы будем в районе ручки, то есть, подальше от петель. Можно проделать элементарный опыт и убедиться, что толкать дверь тем легче, чем дальше мы прилагаем силу от оси вращения. Практический эксперимент в данном случае прямо подтверждается формулой. Так как, дабы моменты сил при разных плечах были равны, надо, чтобы большему плечу соответствовала меньшая сила и наоборот, меньшему плечу соответствовала большая. Чем ближе к оси вращения мы прилагаем силу, тем она должна быть больше. Чем дальше от оси мы воздействуем рычагом, вращая тело, тем меньшую силу нам необходимо будет приложить. Числовые значения легко находятся из формулы для правила моментов.

Именно исходя из правила моментов сил мы берем лом или длинную палку, если нам надо приподнять что-то тяжелое, и, подсунув под груз один конец, тянем лом возле другого конца. По этой же причине шурупы мы вворачиваем отверткой с длинной ручкой, а гайки закручиваем длинным гаечным ключом.

Определение 1

Моментом силы представляется крутящий или вращательный момент, являясь при этом векторной физической величиной.

Она определяется как векторное произведение вектора силы, а также радиус-вектора, который проведен от оси вращения к точке приложения указанной силы.

Момент силы выступает характеристикой вращательного воздействия силы на твердое тело. Понятия «вращающий» и «крутящий» моменты не будут считаться при этом тождественными, поскольку в технике понятие «вращающий» момент рассматривают как внешнее, прикладываемое к объекту, усилие.

В то же время, понятие «крутящий» рассматривается в формате внутреннего усилия, возникающего в объекте под воздействием определенных приложенных нагрузок (подобным понятием оперируют при сопротивлении материалов).

Понятие момента силы

Момент силы в физике может рассматриваться в виде так называемой «вращающей силы». В СИ за единицу измерения принимают ньютон-метр. Момент силы также может называться «моментом пары сил», что отмечено в работах Архимеда над рычагами.

Замечание 1

В простых примерах, при приложении силы к рычагу в перпендикулярном отношении к нему, момент силы будет определяться в виде произведения величины указанной силы и расстояния до оси вращения рычага.

К примеру, сила в три ньютона, приложенная на двухметровом расстоянии от оси вращения рычага, создает момент, равнозначный силе в один ньютон, приложенной на 6-метровом расстоянии к рычагу. Более точно момент силы частицы определяют в формате векторного произведения:

$\vec {M}=\vec{r}\vec{F}$, где:

  • $\vec {F}$ представляет силу, воздействующая на частицу,
  • $\vec {r}$ является радиусом вектора частицы.

В физике следует понимать энергию как скалярную величину, в то время как момент силы будет считаться величиной (псевдо) векторной. Совпадение размерностей подобных величин не будет случайным: момент силы в 1 Н м, который приложен через целый оборот, совершая механическую работу, сообщает энергию в 2 $\pi$ джоулей. Математически это выглядит так:

$E = M\theta $, где:

  • $E$ представляет энергию;
  • $M$ считается вращающимся моментом;
  • $\theta $ будет углом в радианах.

Сегодня измерение момента силы осуществляют посредством задействования специальных датчиков нагрузки тензометрического, оптического и индуктивного типа.

Формулы расчета момента силы

Интересным в физике является вычисление момента силы в поле, производимого по формуле:

$\vec{M} = \vec{M_1}\vec{F}$, где:

  • $\vec{M_1}$ считается моментом рычага;
  • $\vec{F}$ представляет величину действующей силы.

Недостатком такого представления будет считаться тот факт, что оно не определяет направление момента силы, а только лишь его величину. При перпендикулярности силы вектору вектору $\vec{r}$ момент рычага будет равен расстоянию от центра до точки приложенной силы. При этом момент силы окажется максимальным:

$\vec{T}=\vec{r}\vec{F}$

При совершении силой определенного действия на каком-либо расстоянии, она совершит механическую работу. Точно также и момент силы (при выполнении действия через угловое расстояние) совершит работу.

$P = \vec {M}\omega $

В существующей международной системе измерений мощность $P$ будет измеряться в Ваттах, а непосредственно момент силы- в ньютон-метрах. При этом угловая скорость определяется в радианах в секунду.

Момент нескольких сил

Замечание 2

При воздействии на тело двух равных, а также противоположно направленных сил, не лежащих при этом на одной и той же прямой, наблюдается отсутствие пребывания этого тела в состоянии равновесия. Это объясняется тем, что результирующий момент указанных сил относительно любой из осей не имеет нулевого значения, поскольку обе представленные силы имеют направленные в одну сторону моменты (пара сил).

В ситуации, когда тело закрепляется на оси, произойдет его вращение под воздействием пары сил. Если пара сил будет приложенной в отношении свободного тела, оно в таком случае станет вращаться вокруг проходящей сквозь центр тяжести тела оси.

Момент пары сил считается одинаковым в отношении любой оси, которая перпендикулярна плоскости пары. При этом суммарный момент $М$ пары всегда будет равным произведению одной из сил $F$ на расстояние $l$ между силами (плечо пары) в независимости от типов отрезков, на которые оно разделяет положение оси.

$M={FL_1+FL-2} = F{L_1+L_2}=FL$

В ситуации, когда равнодействующая момента нескольких сил равнозначна нулю, он будет считаться одинаковым относительно всех параллельных друг другу осей. По этой причине воздействие на тело всех этих сил возможно заменить действием всего лишь одной пары сил с таким же моментом.


Самое обсуждаемое
Прохождение военной службы по призыву в вооруженных силах российской федерации Прохождение военной службы по призыву в вооруженных силах российской федерации
Гессенские герцогские украшения Гессенские герцогские украшения
Художественные особенности лирики Некрасова Н Художественные особенности лирики Некрасова Н


top